These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34462971)

  • 1. A Soft Variable-Area Electrical-Double-Layer Energy Harvester.
    Vallem V; Roosa E; Ledinh T; Jung W; Kim TI; Rashid-Nadimi S; Kiani A; Dickey MD
    Adv Mater; 2021 Oct; 33(43):e2103142. PubMed ID: 34462971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Device Oriented Flexible and Stretchable Energy Harvester Based on Embedded Liquid-Metal Electrodes and FEP Electret Film.
    Xie J; Wang Y; Dong R; Tao K
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31947525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electricity Generation and Self-Powered Sensing Enabled by Dynamic Electric Double Layer at Hydrogel-Dielectric Elastomer Interfaces.
    Jia L; Guo ZH; Li L; Pan C; Zhang P; Xu F; Pu X; Wang ZL
    ACS Nano; 2021 Dec; 15(12):19651-19660. PubMed ID: 34889594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics.
    Yang Y; Sun N; Wen Z; Cheng P; Zheng H; Shao H; Xia Y; Chen C; Lan H; Xie X; Zhou C; Zhong J; Sun X; Lee ST
    ACS Nano; 2018 Feb; 12(2):2027-2034. PubMed ID: 29420011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Stretchable All-Rubber-Based Thread-Shaped Wearable Electronics for Human Motion Energy-Harvesting and Self-Powered Biomechanical Tracking.
    Zhu J; Wang X; Xing Y; Li J
    Nanoscale Res Lett; 2019 Jul; 14(1):247. PubMed ID: 31338603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable and Soft Electronics using Liquid Metals.
    Dickey MD
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28417536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabric Active Transducer Stimulated by Water Motion for Self-Powered Wearable Device.
    Kwon SH; Kim WK; Park J; Yang Y; Yoo B; Han CJ; Kim YS
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24579-84. PubMed ID: 27564593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Harvesting and Storage with Soft and Stretchable Materials.
    Vallem V; Sargolzaeiaval Y; Ozturk M; Lai YC; Dickey MD
    Adv Mater; 2021 May; 33(19):e2004832. PubMed ID: 33502808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
    Jeong YR; Lee G; Park H; Ha JS
    Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Dual-Functional MXene-Based Bioanode for Wearable Self-Charging Biosupercapacitors.
    Guan S; Yang Y; Wang Y; Zhu X; Ye D; Chen R; Liao Q
    Adv Mater; 2024 Jan; 36(1):e2305854. PubMed ID: 37671789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications.
    Peng S; Yu Y; Wu S; Wang CH
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):43831-43854. PubMed ID: 34515471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretchy Electrochemical Harvesters for Binarized Self-Powered Strain Gauge-Based Static Motion Sensors.
    Sim HJ; Kim J; Choi JH; Oh M; Choi C
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible-to-Stretchable Mechanical and Electrical Interconnects.
    Erlenbach S; Mondal K; Ma J; Neumann TV; Ma S; Holbery JD; Dickey MD
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6005-6012. PubMed ID: 36599089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring.
    Yi F; Wang X; Niu S; Li S; Yin Y; Dai K; Zhang G; Lin L; Wen Z; Guo H; Wang J; Yeh MH; Zi Y; Liao Q; You Z; Zhang Y; Wang ZL
    Sci Adv; 2016 Jun; 2(6):e1501624. PubMed ID: 27386560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape Memory Polymers for Body Motion Energy Harvesting and Self-Powered Mechanosensing.
    Liu R; Kuang X; Deng J; Wang YC; Wang AC; Ding W; Lai YC; Chen J; Wang P; Lin Z; Qi HJ; Sun B; Wang ZL
    Adv Mater; 2018 Feb; 30(8):. PubMed ID: 29318681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids.
    Liu T; Liu M; Dou S; Sun J; Cong Z; Jiang C; Du C; Pu X; Hu W; Wang ZL
    ACS Nano; 2018 Mar; 12(3):2818-2826. PubMed ID: 29494127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems.
    Falk M; Shleev S
    Biosens Bioelectron; 2019 Feb; 126():275-291. PubMed ID: 30445303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical energy generation by squeezing a graphene-based aerogel in an electrolyte.
    Zhou X; Chen X; Zhu H; Dong X; Li L; Cheng G; Zhang Z; Hu X; Yuan N; Ding J
    Nanoscale; 2021 May; 13(17):8304-8312. PubMed ID: 33899842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of liquid metal as an effective approach for deformable electronics and energy devices.
    Bark H; Lee PS
    Chem Sci; 2021 Feb; 12(8):2760-2777. PubMed ID: 34164040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.