BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34463173)

  • 1. Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer.
    Qu F; Ai Z; Liu S; Zhang H; Chen Y; Wang Y; Ni D
    Drug Deliv; 2021 Dec; 28(1):1737-1747. PubMed ID: 34463173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The microbiota is essential for the generation of black tea theaflavins-derived metabolites.
    Chen H; Hayek S; Rivera Guzman J; Gillitt ND; Ibrahim SA; Jobin C; Sang S
    PLoS One; 2012; 7(12):e51001. PubMed ID: 23227227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural identification of mouse fecal metabolites of theaflavin 3,3'-digallate using liquid chromatography tandem mass spectrometry.
    Chen H; Parks TA; Chen X; Gillitt ND; Jobin C; Sang S
    J Chromatogr A; 2011 Oct; 1218(41):7297-306. PubMed ID: 21906744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers.
    Ai Z; Liu S; Qu F; Zhang H; Chen Y; Ni D
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30917581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles.
    Vermeer MA; Mulder TP; Molhuizen HO
    J Agric Food Chem; 2008 Dec; 56(24):12031-6. PubMed ID: 19049290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect and Mechanism of Theaflavins on Fluoride Transport and Absorption in Caco-2 Cells.
    Fan Y; Lei Z; Huang J; Su D; Ni D; Chen Y
    Foods; 2023 Apr; 12(7):. PubMed ID: 37048308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theaflavins enhance intestinal barrier of Caco-2 Cell monolayers through the expression of AMP-activated protein kinase-mediated Occludin, Claudin-1, and ZO-1.
    Park HY; Kunitake Y; Hirasaki N; Tanaka M; Matsui T
    Biosci Biotechnol Biochem; 2015; 79(1):130-7. PubMed ID: 25175351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-damage effect of theaflavin-3'-gallate from black tea on UVB-irradiated HaCaT cells by photoprotection and maintaining cell homeostasis.
    Zheng X; Feng M; Wan J; Shi Y; Xie X; Pan W; Hu B; Wang Y; Wen H; Wang K; Cai S
    J Photochem Photobiol B; 2021 Nov; 224():112304. PubMed ID: 34536907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant Activity and Main Chemical Components of a Novel Fermented Tea.
    Tong T; Liu YJ; Kang J; Zhang CM; Kang SG
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31408939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significant Inactivation of SARS-CoV-2 In Vitro by a Green Tea Catechin, a Catechin-Derivative, and Black Tea Galloylated Theaflavins.
    Ohgitani E; Shin-Ya M; Ichitani M; Kobayashi M; Takihara T; Kawamoto M; Kinugasa H; Mazda O
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inhibitory effect and mechanism of theaflavins on fluoride transport and uptake in HIEC-6 cell model.
    Huang J; Fan Y; Lei Z; Yu Z; Ni D; Chen Y
    Food Chem Toxicol; 2023 Aug; 178():113939. PubMed ID: 37433353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Black tea theaflavins suppress dioxin-induced transformation of the aryl hydrocarbon receptor.
    Fukuda I; Sakane I; Yabushita Y; Sawamura S; Kanazawa K; Ashida H
    Biosci Biotechnol Biochem; 2005 May; 69(5):883-90. PubMed ID: 15914905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence or absence of a gallate moiety on catechins affects their cellular transport.
    Kadowaki M; Sugihara N; Tagashira T; Terao K; Furuno K
    J Pharm Pharmacol; 2008 Sep; 60(9):1189-95. PubMed ID: 18718123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies.
    Glisan SL; Grove KA; Yennawar NH; Lambert JD
    Food Chem; 2017 Feb; 216():296-300. PubMed ID: 27596423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of extracellular signals and cell proliferation by the black tea polyphenol, theaflavin-3,3'-digallate.
    Liang YC; Chen YC; Lin YL; Lin-Shiau SY; Ho CT; Lin JK
    Carcinogenesis; 1999 Apr; 20(4):733-6. PubMed ID: 10223207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidrug resistance-associated protein 2 (MRP2) is an efflux transporter of EGCG and its metabolites in the human small intestine.
    Kikuchi T; Hayashi A; Ikeda N; Morita O; Tasaki J
    J Nutr Biochem; 2022 Sep; 107():109071. PubMed ID: 35636688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism.
    Pereira-Caro G; Moreno-Rojas JM; Brindani N; Del Rio D; Lean MEJ; Hara Y; Crozier A
    J Agric Food Chem; 2017 Jul; 65(26):5365-5374. PubMed ID: 28595385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of HSCCC and Sephadex LH-20 methods An approach to isolation and purification of the main individual theaflavins from black tea.
    Yang C; Li D; Wan X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jan; 861(1):140-4. PubMed ID: 18063426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theaflavin-3-gallate and theaflavin-3'-gallate, polyphenols in black tea with prooxidant properties.
    Babich H; Gottesman RT; Liebling EJ; Schuck AG
    Basic Clin Pharmacol Toxicol; 2008 Jul; 103(1):66-74. PubMed ID: 18346048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel in situ visualisation of rat intestinal absorption of polyphenols via matrix-assisted laser desorption/ionisation mass spectrometry imaging.
    Nguyen HN; Tanaka M; Li B; Ueno T; Matsuda H; Matsui T
    Sci Rep; 2019 Feb; 9(1):3166. PubMed ID: 30816166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.