BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34463376)

  • 1. Quantitative evaluation of prospective motion correction in healthy subjects at 7T MRI.
    Sciarra A; Mattern H; Yakupov R; Chatterjee S; Stucht D; Oeltze-Jafra S; Godenschweger F; Speck O
    Magn Reson Med; 2022 Feb; 87(2):646-657. PubMed ID: 34463376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Markerless high-frequency prospective motion correction for neuroanatomical MRI.
    Frost R; Wighton P; Karahanoğlu FI; Robertson RL; Grant PE; Fischl B; Tisdall MD; van der Kouwe A
    Magn Reson Med; 2019 Jul; 82(1):126-144. PubMed ID: 30821010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective motion correction enables highest resolution time-of-flight angiography at 7T.
    Mattern H; Sciarra A; Godenschweger F; Stucht D; Lüsebrink F; Rose G; Speck O
    Magn Reson Med; 2018 Jul; 80(1):248-258. PubMed ID: 29230871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.
    Todd N; Josephs O; Callaghan MF; Lutti A; Weiskopf N
    Neuroimage; 2015 Jun; 113():1-12. PubMed ID: 25783205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI motion artifact reduction using a conditional diffusion probabilistic model (MAR-CDPM).
    Safari M; Yang X; Fatemi A; Archambault L
    Med Phys; 2024 Apr; 51(4):2598-2610. PubMed ID: 38009583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is it time to switch your T1W sequence? Assessing the impact of prospective motion correction on the reliability and quality of structural imaging.
    Ai L; Craddock RC; Tottenham N; Dyke JP; Lim R; Colcombe S; Milham M; Franco AR
    Neuroimage; 2021 Feb; 226():117585. PubMed ID: 33248256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of prospective and retrospective motion correction in 3D-encoded neuroanatomical MRI.
    Slipsager JM; Glimberg SL; Højgaard L; Paulsen RR; Wighton P; Tisdall MD; Jaimes C; Gagoski BA; Grant PE; van der Kouwe A; Olesen OV; Frost R
    Magn Reson Med; 2022 Feb; 87(2):629-645. PubMed ID: 34490929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients.
    Vos SB; Micallef C; Barkhof F; Hill A; Winston GP; Ourselin S; Duncan JS
    J Neuroradiol; 2018 Oct; 45(6):368-373. PubMed ID: 29505841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining navigator and optical prospective motion correction for high-quality 500 μm resolution quantitative multi-parameter mapping at 7T.
    Vaculčiaková L; Podranski K; Edwards LJ; Ocal D; Veale T; Fox NC; Haak R; Ehses P; Callaghan MF; Pine KJ; Weiskopf N
    Magn Reson Med; 2022 Aug; 88(2):787-801. PubMed ID: 35405027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of prospective motion correction on perivascular spaces at 7T MRI evaluated using motion artifact simulation.
    Zhao B; Zhou Y; Zong X
    Magn Reson Med; 2024 Sep; 92(3):1079-1094. PubMed ID: 38651650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative framework for prospective motion correction evaluation.
    Pannetier NA; Stavrinos T; Ng P; Herbst M; Zaitsev M; Young K; Matson G; Schuff N
    Magn Reson Med; 2016 Feb; 75(2):810-6. PubMed ID: 25761550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective motion correction improves high-resolution quantitative susceptibility mapping at 7T.
    Mattern H; Sciarra A; Lüsebrink F; Acosta-Cabronero J; Speck O
    Magn Reson Med; 2019 Mar; 81(3):1605-1619. PubMed ID: 30298692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A within-coil optical prospective motion-correction system for brain imaging at 7T.
    DiGiacomo P; Maclaren J; Aksoy M; Tong E; Carlson M; Lanzman B; Hashmi S; Watkins R; Rosenberg J; Burns B; Skloss TW; Rettmann D; Rutt B; Bammer R; Zeineh M
    Magn Reson Med; 2020 Sep; 84(3):1661-1671. PubMed ID: 32077521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective Motion Correction for Brain MRI Using an External Tracking System.
    Nael K; Pawha PS; Fleysher L; George K; Stueben J; Roas-Loeffler M; Delman BN; Fayad ZA
    J Neuroimaging; 2021 Jan; 31(1):57-61. PubMed ID: 33146946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing motion sensitivity in 3D high-resolution T
    Liu J; van Gelderen P; de Zwart JA; Duyn JH
    Neuroimage; 2020 Feb; 206():116332. PubMed ID: 31689535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse double inversion-recovery: Improving motion robustness of cardiac T
    Hu C; Huber S; Latif SR; Santacana-Laffitte G; Mojibian HR; Baldassarre LA; Peters DC
    J Magn Reson Imaging; 2018 Jun; 47(6):1498-1508. PubMed ID: 29112315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial assessment of 3D magnetic resonance fingerprinting (MRF) towards quantitative brain imaging for radiation therapy.
    Lu L; Chen Y; Shen C; Lian J; Das S; Marks L; Lin W; Zhu T
    Med Phys; 2020 Mar; 47(3):1199-1214. PubMed ID: 31834641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospective motion correction with NMR markers using only native sequence elements.
    Aranovitch A; Haeberlin M; Gross S; Dietrich BE; Wilm BJ; Brunner DO; Schmid T; Luechinger R; Pruessmann KP
    Magn Reson Med; 2018 Apr; 79(4):2046-2056. PubMed ID: 28840611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of navigator-based prospective motion correction in MPRAGE data acquired at 3T.
    Sarlls JE; Lalonde F; Rettmann D; Shankaranarayanan A; Roopchansingh V; Talagala SL
    PLoS One; 2018; 13(6):e0199372. PubMed ID: 29953459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for retrospective estimation of natural head movement during structural MRI.
    Zacà D; Hasson U; Minati L; Jovicich J
    J Magn Reson Imaging; 2018 Oct; 48(4):927-937. PubMed ID: 29393987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.