These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 34463382)
1. Manipulating Electrocatalytic Li Shi Z; Sun Z; Cai J; Yang X; Wei C; Wang M; Ding Y; Sun J Adv Mater; 2021 Oct; 33(43):e2103050. PubMed ID: 34463382 [TBL] [Abstract][Full Text] [Related]
2. Dual-Defect Engineering of Bidirectional Catalyst for High-Performing Lithium-Sulfur Batteries. Zhou X; Cui Y; Huang X; Wu X; Sun H; Tang S Small; 2023 Oct; 19(40):e2301545. PubMed ID: 37287408 [TBL] [Abstract][Full Text] [Related]
3. Robust Electrocatalytic Li Cui Y; Li J; Cai Y; Zhang H; Zhang S Small; 2022 Nov; 18(44):e2204183. PubMed ID: 36148874 [TBL] [Abstract][Full Text] [Related]
4. "Dual Mediator System" Enables Efficient and Persistent Regulation toward Sulfur Redox Conversion in Lithium-Sulfur Batteries. Jiao L; Jiang H; Lei Y; Wu S; Gao Q; Bu S; Kong X; Yang S; Shu D; Li C; Li H; Cheng B; Lee CS; Zhang W ACS Nano; 2022 Sep; 16(9):14262-14273. PubMed ID: 36001077 [TBL] [Abstract][Full Text] [Related]
5. P-Doped NiTe Yao W; Tian C; Yang C; Xu J; Meng Y; Manke I; Chen N; Wu Z; Zhan L; Wang Y; Chen R Adv Mater; 2022 Mar; 34(11):e2106370. PubMed ID: 35019192 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li-S Batteries. Song Y; Zhao S; Chen Y; Cai J; Li J; Yang Q; Sun J; Liu Z ACS Appl Mater Interfaces; 2019 Feb; 11(6):5687-5694. PubMed ID: 30714710 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Dual-Directional Sulfur Redox via a Biotemplated Single-Atomic Fe-N Ding Y; Cheng Q; Wu J; Yan T; Shi Z; Wang M; Yang D; Wang P; Zhang L; Sun J Adv Mater; 2022 Jul; 34(28):e2202256. PubMed ID: 35546336 [TBL] [Abstract][Full Text] [Related]
8. A High-Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li-S Batteries. Ye Z; Jiang Y; Li L; Wu F; Chen R Adv Mater; 2020 Aug; 32(32):e2002168. PubMed ID: 32596845 [TBL] [Abstract][Full Text] [Related]
9. Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical High-Energy Li-S Batteries. Zhao C; Xu GL; Zhao T; Amine K Angew Chem Int Ed Engl; 2020 Sep; 59(40):17634-17640. PubMed ID: 32645250 [TBL] [Abstract][Full Text] [Related]
10. Efficient Polysulfide Trapping and Conversion on N-Doped CoTe Song X; Tian D; Qiu Y; Sun X; Jiang B; Zhao C; Zhang Y; Xu X; Fan L; Zhang N Small; 2021 Oct; 17(42):e2102962. PubMed ID: 34520126 [TBL] [Abstract][Full Text] [Related]
11. Revealing the Sulfur Redox Paths in a Li-S Battery by an In Situ Hyphenated Technique of Electrochemistry and Mass Spectrometry. Yu Z; Shao Y; Ma L; Liu C; Gu C; Liu J; He P; Li M; Nie Z; Peng Z; Shao Y Adv Mater; 2022 Feb; 34(7):e2106618. PubMed ID: 34862816 [TBL] [Abstract][Full Text] [Related]
12. Surface Defect Engineering of a Bimetallic Oxide Precatalyst Enables Kinetics-Enhanced Lithium-Sulfur Batteries. Zhao G; Kao CW; Gu Z; Zhou S; Chang LY; Yan T; Cheng C; Yuan C; Li H; Chan TS; Zhang L ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315848 [TBL] [Abstract][Full Text] [Related]
13. Modulating d-Band Electronic Structures of Molybdenum Disulfide via p/n Doping to Boost Polysulfide Conversion in Lithium-Sulfur Batteries. Liu G; Zeng Q; Sui X; Tian S; Sun X; Wu Q; Li X; Zhang Y; Tao K; Xie E; Zhang Z Small; 2023 Sep; 19(37):e2301085. PubMed ID: 37194979 [TBL] [Abstract][Full Text] [Related]
14. Design Multifunctional Catalytic Interface: Toward Regulation of Polysulfide and Li Fan S; Huang S; Pam ME; Chen S; Wu Q; Hu J; Wang Y; Ang LK; Yan C; Shi Y; Yang HY Small; 2019 Dec; 15(51):e1906132. PubMed ID: 31756047 [TBL] [Abstract][Full Text] [Related]
15. Propelling Polysulfide Conversion by Defect-Rich MoS Liu M; Zhang C; Su J; Chen X; Ma T; Huang T; Yu A ACS Appl Mater Interfaces; 2019 Jun; 11(23):20788-20795. PubMed ID: 31074966 [TBL] [Abstract][Full Text] [Related]
16. Promoting Reversible Redox Kinetics by Separator Architectures Based on CoS Hu Q; Lu J; Yang C; Zhang C; Hu J; Chang S; Dong H; Wu C; Hong Y; Zhang L Small; 2020 Aug; 16(34):e2002046. PubMed ID: 32697433 [TBL] [Abstract][Full Text] [Related]
17. Single Nickel Atom Catalysts Enable Fast Polysulfide Redox for Safe and Long-Cycle Lithium-Sulfur Batteries. Ma Y; Wu T; Jiao Y; Wang F; Chen B; Yan Y; Hu A; Li Y; Fan Y; He M; Hu Y; Li Y; Lei T; Zhang Y; Chen W; Huang M; Zhu J; Li F Small; 2022 Dec; 18(51):e2205470. PubMed ID: 36328710 [TBL] [Abstract][Full Text] [Related]
18. Low-Bandgap Se-Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward High-Performance Lithium-Sulfur Batteries. Tian Y; Li G; Zhang Y; Luo D; Wang X; Zhao Y; Liu H; Ji P; Du X; Li J; Chen Z Adv Mater; 2020 Jan; 32(4):e1904876. PubMed ID: 31697001 [TBL] [Abstract][Full Text] [Related]
19. Defects Engineering of Lightweight Metal-Organic Frameworks-Based Electrocatalytic Membrane for High-Loading Lithium-Sulfur Batteries. Li S; Lin J; Ding Y; Xu P; Guo X; Xiong W; Wu DY; Dong Q; Chen J; Zhang L ACS Nano; 2021 Aug; 15(8):13803-13813. PubMed ID: 34379405 [TBL] [Abstract][Full Text] [Related]
20. An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries. Zhao M; Chen X; Li XY; Li BQ; Huang JQ Adv Mater; 2021 Apr; 33(13):e2007298. PubMed ID: 33586230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]