These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34463614)

  • 21. Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein.
    Tai L; Zhu G; Yang M; Cao L; Xing X; Yin G; Chan C; Qin C; Rao Z; Wang X; Sun F; Zhu Y
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34782481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research progress on coronavirus S proteins and their receptors.
    Yuan HW; Wen HL
    Arch Virol; 2021 Jul; 166(7):1811-1817. PubMed ID: 33778918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple sites on SARS-CoV-2 spike protein are susceptible to proteolysis by cathepsins B, K, L, S, and V.
    Bollavaram K; Leeman TH; Lee MW; Kulkarni A; Upshaw SG; Yang J; Song H; Platt MO
    Protein Sci; 2021 Jun; 30(6):1131-1143. PubMed ID: 33786919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike.
    Mehdipour AR; Hummer G
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33903171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection.
    Fuentes-Prior P
    J Biol Chem; 2021; 296():100135. PubMed ID: 33268377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states.
    Peters MH; Bastidas O; Kokron DS; Henze CE
    PLoS One; 2020; 15(11):e0241168. PubMed ID: 33170884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure, Function, and Evolution of Coronavirus Spike Proteins.
    Li F
    Annu Rev Virol; 2016 Sep; 3(1):237-261. PubMed ID: 27578435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of Vaccine Design.
    Xia X
    Viruses; 2021 Jan; 13(1):. PubMed ID: 33466921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at Its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody.
    Scheim DE
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Molecule FRET Imaging of Virus Spike-Host Interactions.
    Lu M
    Viruses; 2021 Feb; 13(2):. PubMed ID: 33669922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intermediates in SARS-CoV-2 spike-mediated cell entry.
    Marcink TC; Kicmal T; Armbruster E; Zhang Z; Zipursky G; Golub KL; Idris M; Khao J; Drew-Bear J; McGill G; Gallagher T; Porotto M; des Georges A; Moscona A
    Sci Adv; 2022 Aug; 8(33):eabo3153. PubMed ID: 35984891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced sampling protocol to elucidate fusion peptide opening of SARS-CoV-2 spike protein.
    Remington JM; McKay KT; Ferrell JB; Schneebeli ST; Li J
    Biophys J; 2021 Jul; 120(14):2848-2858. PubMed ID: 34087207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an
    Pandey P; Rane JS; Chatterjee A; Kumar A; Khan R; Prakash A; Ray S
    J Biomol Struct Dyn; 2021 Oct; 39(16):6306-6316. PubMed ID: 32698689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation.
    Allen JD; Chawla H; Samsudin F; Zuzic L; Shivgan AT; Watanabe Y; He WT; Callaghan S; Song G; Yong P; Brouwer PJM; Song Y; Cai Y; Duyvesteyn HME; Malinauskas T; Kint J; Pino P; Wurm MJ; Frank M; Chen B; Stuart DI; Sanders RW; Andrabi R; Burton DR; Li S; Bond PJ; Crispin M
    Biochemistry; 2021 Jul; 60(27):2153-2169. PubMed ID: 34213308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dramatic Differences between the Structural Susceptibility of the S1 Pre- and S2 Postfusion States of the SARS-CoV-2 Spike Protein to External Electric Fields Revealed by Molecular Dynamics Simulations.
    Lipskij A; Arbeitman C; Rojas P; Ojeda-May P; Garcia ME
    Viruses; 2023 Dec; 15(12):. PubMed ID: 38140646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural remodeling of SARS-CoV-2 spike protein glycans reveals the regulatory roles in receptor-binding affinity.
    Hsu YP; Frank M; Mukherjee D; Shchurik V; Makarov A; Mann BF
    Glycobiology; 2023 Mar; 33(2):126-137. PubMed ID: 36370046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca
    Straus MR; Tang T; Lai AL; Flegel A; Bidon M; Freed JH; Daniel S; Whittaker GR
    J Virol; 2020 Jun; 94(13):. PubMed ID: 32295925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of Protein
    Casas-Sanchez A; Romero-Ramirez A; Hargreaves E; Ellis CC; Grajeda BI; Estevao IL; Patterson EI; Hughes GL; Almeida IC; Zech T; Acosta-Serrano Á
    mBio; 2021 Feb; 13(1):e0371821. PubMed ID: 35164559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variations in SARS-CoV-2 Spike Protein Cell Epitopes and Glycosylation Profiles During Global Transmission Course of COVID-19.
    Xu W; Wang M; Yu D; Zhang X
    Front Immunol; 2020; 11():565278. PubMed ID: 33013929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.