BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 34463740)

  • 1. Developmental single-cell transcriptomics in the Lytechinus variegatus sea urchin embryo.
    Massri AJ; Greenstreet L; Afanassiev A; Berrio A; Wray GA; Schiebinger G; McClay DR
    Development; 2021 Oct; 148(19):. PubMed ID: 34463740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos.
    Satoh N; Hisata K; Foster S; Morita S; Nishitsuji K; Oulhen N; Tominaga H; Wessel GM
    Dev Biol; 2022 Mar; 483():128-142. PubMed ID: 35038441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo.
    Logan CY; McClay DR
    Development; 1997 Jun; 124(11):2213-23. PubMed ID: 9187147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes.
    Hogan JD; Keenan JL; Luo L; Ibn-Salem J; Lamba A; Schatzberg D; Piacentino ML; Zuch DT; Core AB; Blumberg C; Timmermann B; Grau JH; Speranza E; Andrade-Navarro MA; Irie N; Poustka AJ; Bradham CA
    Dev Biol; 2020 Apr; 460(2):139-154. PubMed ID: 31816285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal-Level Genome Assembly of the Sea Urchin Lytechinus variegatus Substantially Improves Functional Genomic Analyses.
    Davidson PL; Guo H; Wang L; Berrio A; Zhang H; Chang Y; Soborowski AL; McClay DR; Fan G; Wray GA
    Genome Biol Evol; 2020 Jul; 12(7):1080-1086. PubMed ID: 32433766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal sequence of mesoderm and endoderm lineage segregation during mouse gastrulation.
    Probst S; Sagar ; Tosic J; Schwan C; Grün D; Arnold SJ
    Development; 2021 Jan; 148(1):. PubMed ID: 33199445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed transition to new cell fates during cellular reprogramming.
    Cheng X; Lyons DC; Socolar JE; McClay DR
    Dev Biol; 2014 Jul; 391(2):147-57. PubMed ID: 24780626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation.
    Adomako-Ankomah A; Ettensohn CA
    Development; 2013 Oct; 140(20):4214-25. PubMed ID: 24026121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the toxic benthic dinoflagellate Ostreopsis cf. ovata on fertilization and early development of the sea urchin Lytechinus variegatus.
    Neves RAF; Contins M; Nascimento SM
    Mar Environ Res; 2018 Apr; 135():11-17. PubMed ID: 29402518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does mouse embryo primordial germ cell activation start before implantation as suggested by single-cell transcriptomics dynamics?
    Gerovska D; Araúzo-Bravo MJ
    Mol Hum Reprod; 2016 Mar; 22(3):208-25. PubMed ID: 26740066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback circuits are numerous in embryonic gene regulatory networks and offer a stabilizing influence on evolution of those networks.
    Massri AJ; McDonald B; Wray GA; McClay DR
    Evodevo; 2023 Jun; 14(1):10. PubMed ID: 37322563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cis-regulatory dynamics of embryonic development at single-cell resolution.
    Cusanovich DA; Reddington JP; Garfield DA; Daza RM; Aghamirzaie D; Marco-Ferreres R; Pliner HA; Christiansen L; Qiu X; Steemers FJ; Trapnell C; Shendure J; Furlong EEM
    Nature; 2018 Mar; 555(7697):538-542. PubMed ID: 29539636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage.
    Peter IS; Davidson EH
    Dev Biol; 2010 Apr; 340(2):188-99. PubMed ID: 19895806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis.
    Lhomond G; McClay DR; Gache C; Croce JC
    Development; 2012 Feb; 139(4):816-25. PubMed ID: 22274701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin
    Slota LA; Miranda EM; McClay DR
    Evodevo; 2019; 10():2. PubMed ID: 30792836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.