BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34463740)

  • 21. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conservation of the WD-repeat, microtubule-binding protein, EMAP, in sea urchins, humans, and the nematode C. elegans.
    Suprenant KA; Tuxhorn JA; Daggett MA; Ahrens DP; Hostetler A; Palange JM; VanWinkle CE; Livingston BT
    Dev Genes Evol; 2000 Jan; 210(1):2-10. PubMed ID: 10603080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional annotation of a hugely expanded nanos repertoire in Lytechinus variegatus, the green sea urchin.
    Pieplow C; Wessel G
    Mol Reprod Dev; 2023 May; 90(5):310-322. PubMed ID: 37039283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endo16 is required for gastrulation in the sea urchin Lytechinus variegatus.
    Romano LA; Wray GA
    Dev Growth Differ; 2006 Oct; 48(8):487-97. PubMed ID: 17026713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida).
    Boyle MJ; Yamaguchi E; Seaver EC
    Evodevo; 2014; 5():39. PubMed ID: 25908956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris.
    Israel JW; Martik ML; Byrne M; Raff EC; Raff RA; McClay DR; Wray GA
    PLoS Biol; 2016 Mar; 14(3):e1002391. PubMed ID: 26943850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos.
    Hardin J; Illingworth CA
    Dev Dyn; 2006 Nov; 235(11):3121-31. PubMed ID: 16958110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromosomal-Level Genome Assembly of the Painted Sea Urchin Lytechinus pictus: A Genetically Enabled Model System for Cell Biology and Embryonic Development.
    Warner JF; Lord JW; Schreiter SA; Nesbit KT; Hamdoun A; Lyons DC
    Genome Biol Evol; 2021 Apr; 13(4):. PubMed ID: 33769486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo.
    Croce JC; McClay DR
    Development; 2010 Jan; 137(1):83-91. PubMed ID: 20023163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms.
    Davidson EH; Cameron RA; Ransick A
    Development; 1998 Sep; 125(17):3269-90. PubMed ID: 9693132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of dishevelled localization and function in the early sea urchin embryo.
    Leonard JD; Ettensohn CA
    Dev Biol; 2007 Jun; 306(1):50-65. PubMed ID: 17433285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A single cell RNA sequencing resource for early sea urchin development.
    Foster S; Oulhen N; Wessel G
    Development; 2020 Sep; 147(17):. PubMed ID: 32816969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo.
    Peterson RE; McClay DR
    Dev Biol; 2005 Jun; 282(1):126-37. PubMed ID: 15936334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network.
    Rho HK; McClay DR
    Development; 2011 Mar; 138(5):937-45. PubMed ID: 21303847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methodologies for Following EMT In Vivo at Single Cell Resolution.
    Massri AJ; Schiebinger GR; Berrio A; Wang L; Wray GA; McClay DR
    Methods Mol Biol; 2021; 2179():303-314. PubMed ID: 32939729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-cell transcriptomics reveals evolutionary reconfiguration of embryonic cell fate specification in the sea urchin
    Massri AJ; Berrio A; Afanassiev A; Greenstreet L; Pipho K; Byrne M; Schiebinger G; McClay DR; Wray GA
    bioRxiv; 2024 May; ():. PubMed ID: 38746376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer.
    Hashimshony T; Feder M; Levin M; Hall BK; Yanai I
    Nature; 2015 Mar; 519(7542):219-22. PubMed ID: 25487147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wnt6 activates endoderm in the sea urchin gene regulatory network.
    Croce J; Range R; Wu SY; Miranda E; Lhomond G; Peng JC; Lepage T; McClay DR
    Development; 2011 Aug; 138(15):3297-306. PubMed ID: 21750039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.