These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Protein Folding Free Energy Landscape along the Committor - the Optimal Folding Coordinate. Krivov SV J Chem Theory Comput; 2018 Jul; 14(7):3418-3427. PubMed ID: 29791148 [TBL] [Abstract][Full Text] [Related]
5. Energy Decomposition along Reaction Coordinate: Theory and Applications to Nonequilibrium Ensembles of Trajectories. Li W J Phys Chem A; 2022 Oct; 126(42):7763-7773. PubMed ID: 36214522 [TBL] [Abstract][Full Text] [Related]
6. Free energy for protein folding from nonequilibrium simulations using the Jarzynski equality. West DK; Olmsted PD; Paci E J Chem Phys; 2006 Nov; 125(20):204910. PubMed ID: 17144743 [TBL] [Abstract][Full Text] [Related]
7. Efficient and exact sampling of transition path ensembles on Markovian networks. Sharpe DJ; Wales DJ J Chem Phys; 2020 Jul; 153(2):024121. PubMed ID: 32668926 [TBL] [Abstract][Full Text] [Related]
8. Accurate Protein-Folding Transition-Path Statistics from a Simple Free-Energy Landscape. Jacobs WM; Shakhnovich EI J Phys Chem B; 2018 Dec; 122(49):11126-11136. PubMed ID: 30091592 [TBL] [Abstract][Full Text] [Related]
9. Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction. Das P; Moll M; Stamati H; Kavraki LE; Clementi C Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9885-90. PubMed ID: 16785435 [TBL] [Abstract][Full Text] [Related]
10. Identification of the protein folding transition state from molecular dynamics trajectories. Muff S; Caflisch A J Chem Phys; 2009 Mar; 130(12):125104. PubMed ID: 19334897 [TBL] [Abstract][Full Text] [Related]
12. Unfolded protein ensembles, folding trajectories, and refolding rate prediction. Das A; Sin BK; Mohazab AR; Plotkin SS J Chem Phys; 2013 Sep; 139(12):121925. PubMed ID: 24089737 [TBL] [Abstract][Full Text] [Related]
13. A benchmark for reaction coordinates in the transition path ensemble. Li W; Ma A J Chem Phys; 2016 Apr; 144(13):134104. PubMed ID: 27059559 [TBL] [Abstract][Full Text] [Related]
14. Optimizing reaction coordinate by flux maximization in the transition path ensemble. Li W J Chem Phys; 2022 Feb; 156(5):054117. PubMed ID: 35135266 [TBL] [Abstract][Full Text] [Related]
15. Atomically detailed simulations of helix formation with the stochastic difference equation. Cárdenas AE; Elber R Biophys J; 2003 Nov; 85(5):2919-39. PubMed ID: 14581195 [TBL] [Abstract][Full Text] [Related]
16. All-atom calculation of protein free-energy profiles. Orioli S; Ianeselli A; Spagnolli G; Faccioli P J Chem Phys; 2017 Oct; 147(15):152724. PubMed ID: 29055321 [TBL] [Abstract][Full Text] [Related]
17. Analysis of Molecular Dynamics Simulations of Protein Folding. Best RB Methods Mol Biol; 2022; 2376():317-329. PubMed ID: 34845617 [TBL] [Abstract][Full Text] [Related]
18. Supervised learning and the finite-temperature string method for computing committor functions and reaction rates. Hasyim MR; Batton CH; Mandadapu KK J Chem Phys; 2022 Nov; 157(18):184111. PubMed ID: 36379761 [TBL] [Abstract][Full Text] [Related]
19. Hydrodynamic description of protein folding: the decrease of the probability fluxes as an indicator of transition states in two-state folders. Palyanov AY; Chekmarev SF J Biomol Struct Dyn; 2017 Nov; 35(14):3152-3160. PubMed ID: 27819623 [TBL] [Abstract][Full Text] [Related]