These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 34464403)

  • 1. Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning.
    Guo A; Mazumder NR; Ladner DP; Foraker RE
    PLoS One; 2021; 16(8):e0256428. PubMed ID: 34464403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality.
    Kanwal F; Taylor TJ; Kramer JR; Cao Y; Smith D; Gifford AL; El-Serag HB; Naik AD; Asch SM
    JAMA Netw Open; 2020 Nov; 3(11):e2023780. PubMed ID: 33141161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Predictability of Readmissions and Death Using Machine Learning in Cirrhosis.
    Hu C; Anjur V; Saboo K; Reddy KR; O'Leary J; Tandon P; Wong F; Garcia-Tsao G; Kamath PS; Lai JC; Biggins SW; Fallon MB; Thuluvath P; Subramanian RM; Maliakkal B; Vargas H; Thacker LR; Iyer RK; Bajaj JS
    Am J Gastroenterol; 2021 Feb; 116(2):336-346. PubMed ID: 33038139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.
    Alie MS; Negesse Y; Kindie K; Merawi DS
    BMC Public Health; 2024 Jun; 24(1):1728. PubMed ID: 38943093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of acute kidney injury in patients with liver cirrhosis using machine learning models: evidence from the MIMIC-III and MIMIC-IV.
    Tian J; Cui R; Song H; Zhao Y; Zhou T
    Int Urol Nephrol; 2024 Jan; 56(1):237-247. PubMed ID: 37256426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The MELD-Plus: A generalizable prediction risk score in cirrhosis.
    Kartoun U; Corey KE; Simon TG; Zheng H; Aggarwal R; Ng K; Shaw SY
    PLoS One; 2017; 12(10):e0186301. PubMed ID: 29069090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records.
    Rahimian F; Salimi-Khorshidi G; Payberah AH; Tran J; Ayala Solares R; Raimondi F; Nazarzadeh M; Canoy D; Rahimi K
    PLoS Med; 2018 Nov; 15(11):e1002695. PubMed ID: 30458006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting post-stroke pneumonia using deep neural network approaches.
    Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y
    Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a Deep Learning Model to Predict Hepatocellular Carcinoma in Patients With Hepatitis C Cirrhosis.
    Ioannou GN; Tang W; Beste LA; Tincopa MA; Su GL; Van T; Tapper EB; Singal AG; Zhu J; Waljee AK
    JAMA Netw Open; 2020 Sep; 3(9):e2015626. PubMed ID: 32870314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning for Short-Term Mortality in Acute Decompensation of Liver Cirrhosis: Better than MELD Score.
    Salkić N; Jovanović P; Barišić Jaman M; Selimović N; Paštrović F; Grgurević I
    Diagnostics (Basel); 2024 May; 14(10):. PubMed ID: 38786278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis.
    Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY
    Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Survival From Large Echocardiography and Electronic Health Record Datasets: Optimization With Machine Learning.
    Samad MD; Ulloa A; Wehner GJ; Jing L; Hartzel D; Good CW; Williams BA; Haggerty CM; Fornwalt BK
    JACC Cardiovasc Imaging; 2019 Apr; 12(4):681-689. PubMed ID: 29909114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.
    Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: the Henan Rural Cohort Study.
    Zhang L; Wang Y; Niu M; Wang C; Wang Z
    Sci Rep; 2020 Mar; 10(1):4406. PubMed ID: 32157171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated model for end-stage liver disease maybe superior to some other model for end-stage liver disease-based systems in addition to Child-Turcotte-Pugh and albumin-bilirubin scores in patients with hepatitis B virus-related liver cirrhosis and spontaneous bacterial peritonitis.
    Chen PC; Chen BH; Huang CH; Jeng WJ; Hsieh YC; Teng W; Chen YC; Ho YP; Sheen IS; Lin CY
    Eur J Gastroenterol Hepatol; 2019 Oct; 31(10):1256-1263. PubMed ID: 31498284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of fatty liver disease using machine learning algorithms.
    Wu CC; Yeh WC; Hsu WD; Islam MM; Nguyen PAA; Poly TN; Wang YC; Yang HC; Jack Li YC
    Comput Methods Programs Biomed; 2019 Mar; 170():23-29. PubMed ID: 30712601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive value of Refit Model for End-Stage Liver Disease, Refit Model for End-Stage Liver Disease-Na, and pre-existing scoring system for 3-month mortality in Korean patients with cirrhosis.
    Koo JK; Kim JH; Choi YJ; Lee CI; Yang JH; Yoon HY; Choi HJ; Ko SY; Choe WH; Kwon SY; Lee CH
    J Gastroenterol Hepatol; 2013 Jul; 28(7):1209-16. PubMed ID: 23425057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing and comparing deep learning and machine learning algorithms for osteoporosis risk prediction.
    Qiu C; Su K; Luo Z; Tian Q; Zhao L; Wu L; Deng H; Shen H
    Front Artif Intell; 2024; 7():1355287. PubMed ID: 38919268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A revised scope in different prognostic models in cirrhotic patients: Current and future perspectives, an Egyptian experience.
    Hassan EA; Abd El-Rehim AS
    Arab J Gastroenterol; 2013 Dec; 14(4):158-64. PubMed ID: 24433645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.