These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34464641)

  • 1. Towards producing high-quality lignin-based carbon fibers: A review of crucial factors affecting lignin properties and conversion techniques.
    Qu W; Yang J; Sun X; Bai X; Jin H; Zhang M
    Int J Biol Macromol; 2021 Oct; 189():768-784. PubMed ID: 34464641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of Polyacrylonitrile/Lignin Blends in Ionic Liquids under Melt Spinning Conditions.
    Jiang J; Srinivas K; Kiziltas A; Geda A; Ahring BK
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31336600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disassociated molecular orientation distributions of a composite cellulose-lignin carbon fiber precursor: A study by rotor synchronized NMR spectroscopy and X-ray scattering.
    Svenningsson L; Bengtsson J; Jedvert K; Schlemmer W; Theliander H; Evenäs L
    Carbohydr Polym; 2021 Feb; 254():117293. PubMed ID: 33357862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of electrospun polyacrylonitrile- derived carbon fibers and comparison of properties with bulk form.
    Alarifi IM; Khan WS; Asmatulu R
    PLoS One; 2018; 13(8):e0201345. PubMed ID: 30091992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel partially biobased PAN-lignin blend as a potential carbon fiber precursor.
    Seydibeyoğlu MÖ
    J Biomed Biotechnol; 2012; 2012():598324. PubMed ID: 23118513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Graphitized Carbon Fibers from Fusible Lignin and Their Application in Supercapacitors.
    Zhou L; You X; Wang L; Qi S; Wang R; Uraki Y; Zhang H
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano MnO
    Guo C; Ma H; Zhang Q; Li M; Jiang H; Chen C; Wang S; Min D
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32213993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Stabilization and Carbonization of a Lignin-Cellulose Precursor to Carbon Fiber.
    Bengtsson A; Bengtsson J; Jedvert K; Kakkonen M; Tanhuanpää O; Brännvall E; Sedin M
    ACS Omega; 2022 May; 7(19):16793-16802. PubMed ID: 35601329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer.
    Youe WJ; Lee SM; Lee SS; Lee SH; Kim YS
    Int J Biol Macromol; 2016 Jan; 82():497-504. PubMed ID: 26459170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends.
    Hosseinaei O; Harper DP; Bozell JJ; Rials TG
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28671571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers.
    Martin HJ; Luo H; Chen H; Do-Thanh CL; Kearney LT; Mayes R; Naskar AK; Dai S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8663-8673. PubMed ID: 31977177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkali promoted the adsorption of toluene by adjusting the surface properties of lignin-derived carbon fibers.
    Song M; Yu L; Song B; Meng F; Tang X
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22284-22294. PubMed ID: 31152422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds.
    Al Aiti M; Das A; Kanerva M; Järventausta M; Johansson P; Scheffler C; Göbel M; Jehnichen D; Brünig H; Wulff L; Boye S; Arnhold K; Kuusipalo J; Heinrich G
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of lignin-based monomer on controlling the molecular weight and physical properties of the polyacrylonitrile/lignin copolymer.
    Liu P; Zhang N; Yi Y; Gibril ME; Wang S; Kong F
    Int J Biol Macromol; 2020 Dec; 164():2312-2322. PubMed ID: 32810531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization.
    Jia G; Innocent MT; Yu Y; Hu Z; Wang X; Xiang H; Zhu M
    Int J Biol Macromol; 2023 Jan; 226():646-659. PubMed ID: 36521701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors.
    Cao Q; Zhu M; Chen J; Song Y; Li Y; Zhou J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1210-1221. PubMed ID: 31845573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin-Based High-Performance Fibers by Textile Spinning Techniques.
    Jin Y; Lin J; Cheng Y; Lu C
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose-lignin composite fibers as precursors for carbon fibers: Part 2 - The impact of precursor properties on carbon fibers.
    Le ND; Trogen M; Ma Y; Varley RJ; Hummel M; Byrne N
    Carbohydr Polym; 2020 Dec; 250():116918. PubMed ID: 33049890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal Treatment Modifies Kraft Lignin for Lignin- and Cellulose-Based Carbon Fiber Precursors.
    Mikkilä J; Trogen M; Koivu KAY; Kontro J; Kuuskeri J; Maltari R; Dekere Z; Kemell M; Mäkelä MR; Nousiainen PA; Hummel M; Sipilä J; Hildén K
    ACS Omega; 2020 Mar; 5(11):6130-6140. PubMed ID: 32226896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Removal of Pb(II) Ions by Electrospun PAN/Sago Lignin-based Activated Carbon Nanofibers.
    Nordin NA; Abdul Rahman N; Abdullah AH
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32640766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.