These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34464718)

  • 1. Physiological and transcriptomics analysis of the effect of recombinant serine protease on the preservation of loquat.
    Yan F; Cai T; Wu Y; Chen S; Chen J
    Genomics; 2021 Nov; 113(6):3750-3761. PubMed ID: 34464718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process.
    Song H; Zhao X; Hu W; Wang X; Shen T; Yang L
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat.
    Yang J; Zhang J; Niu XQ; Zheng XL; Chen X; Zheng GH; Wu JC
    PLoS One; 2021; 16(4):e0238873. PubMed ID: 33914776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating proteomic and transcriptomic analyses of loquat (Eriobotrya japonica Lindl.) in response to cold stress.
    Lou X; Wang H; Ni X; Gao Z; Iqbal S
    Gene; 2018 Nov; 677():57-65. PubMed ID: 30017739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets.
    Xu HX; Li XY; Chen JW
    J Plant Res; 2017 Sep; 130(5):893-907. PubMed ID: 28447204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of alterations to the transcriptome of Loquat (Eriobotrya japonica Lindl.) under low temperature stress via de novo sequencing.
    Gong RG; Lai J; Yang W; Liao MA; Wang ZH; Liang GL
    Genet Mol Res; 2015 Aug; 14(3):9423-36. PubMed ID: 26345876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptome analysis of flower bud transition and functional characterization of EjAGL17 involved in regulating floral initiation in loquat.
    Xia Y; Xue B; Shi M; Zhan F; Wu D; Jing D; Wang S; Guo Q; Liang G; He Q
    PLoS One; 2020; 15(10):e0239382. PubMed ID: 33031442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development.
    Hadjipieri M; Georgiadou EC; Marin A; Diaz-Mula HM; Goulas V; Fotopoulos V; Tomás-Barberán FA; Manganaris GA
    BMC Plant Biol; 2017 Jun; 17(1):102. PubMed ID: 28615062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional analysis for the difference in carotenoids accumulation in flesh and peel of white-fleshed loquat fruit.
    Zou S; Shahid MQ; Zhao C; Wang M; Bai Y; He Y; Lin S; Yang X
    PLoS One; 2020; 15(6):e0233631. PubMed ID: 32589636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethylene biosynthesis and perception during ripening of loquat fruit (Eriobotrya japonica Lindl.).
    Alos E; Martinez-Fuentes A; Reig C; Mesejo C; Rodrigo MJ; Agustí M; Zacarías L
    J Plant Physiol; 2017 Mar; 210():64-71. PubMed ID: 28088087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic Analysis Reveals Potential Gene Regulatory Networks Under Cold Stress of Loquat (
    Zhang J; An H; Zhang X; Xu F; Zhou B
    Front Plant Sci; 2022; 13():944269. PubMed ID: 35937353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EjMYB8 Transcriptionally Regulates Flesh Lignification in Loquat Fruit.
    Wang WQ; Zhang J; Ge H; Li SJ; Li X; Yin XR; Grierson D; Chen KS
    PLoS One; 2016; 11(4):e0154399. PubMed ID: 27111303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of the incidence and severity of purple spot physiological disorder in loquat fruit through a physiological and molecular approach.
    Hadjipieri M; Georgiadou EC; Costa F; Fotopoulos V; Manganaris GA
    Plant Physiol Biochem; 2020 Oct; 155():980-986. PubMed ID: 33039939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors.
    Zeng JK; Li X; Xu Q; Chen JY; Yin XR; Ferguson IB; Chen KS
    Plant Biotechnol J; 2015 Dec; 13(9):1325-34. PubMed ID: 25778106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome analysis provides new insight into major proteins involved in gibberellin-induced fruit setting in triploid loquat (Eriobotrya japonica).
    Jiang S; An H; Xu F; Zhang X
    Genes Genomics; 2020 Apr; 42(4):383-392. PubMed ID: 31902111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome Analysis Reveals Candidate Genes Involved in Gibberellin-Induced Fruit Setting in Triploid Loquat (
    Jiang S; Luo J; Xu F; Zhang X
    Front Plant Sci; 2016; 7():1924. PubMed ID: 28066478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Analysis of
    Peng Z; Li W; Gan X; Zhao C; Paudel D; Su W; Lv J; Lin S; Liu Z; Yang X
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene signal transduction elements involved in chilling injury in non-climacteric loquat fruit.
    Wang P; Zhang B; Li X; Xu C; Yin X; Shan L; Ferguson I; Chen K
    J Exp Bot; 2010; 61(1):179-90. PubMed ID: 19884229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule real-time sequencing of the full-length transcriptome of loquat under low-temperature stress.
    Pan C; Wang Y; Tao L; Zhang H; Deng Q; Yang Z; Chi Z; Yang Y
    PLoS One; 2020; 15(9):e0238942. PubMed ID: 32915882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of
    Jiang Y; Peng J; Wang M; Su W; Gan X; Jing Y; Yang X; Lin S; Gao Y
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31905863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.