These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34464793)

  • 1. Carbon stability and mobility of ball milled lignin- and cellulose-rich biochar colloids.
    Chen X; Wu W; Han L; Gu M; Li J; Chen M
    Sci Total Environ; 2022 Jan; 802():149759. PubMed ID: 34464793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon content determines the aggregation of biochar colloids from various feedstocks.
    Li Q; Zhang X; Mao M; Wang X; Shang J
    Sci Total Environ; 2023 Jul; 880():163313. PubMed ID: 37030377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of feedstock biopolymer compositions on the physiochemical characteristics of dissolved black carbon from lignocellulose-based biochar.
    Han L; Nie X; Wei J; Gu M; Wu W; Chen M
    Sci Total Environ; 2021 Jan; 751():141491. PubMed ID: 32861946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Aging Changed Aggregation Kinetics and Transport of Biochar Colloids.
    Wang Y; Zhang W; Shang J; Shen C; Joseph SD
    Environ Sci Technol; 2019 Jul; 53(14):8136-8146. PubMed ID: 31185160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant.
    Li J; Li Y; Wu Y; Zheng M
    J Hazard Mater; 2014 Sep; 280():450-7. PubMed ID: 25194813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous Cr(VI) removal by a novel ball milled Fe
    Wang K; Sun Y; Tang J; He J; Sun H
    Chemosphere; 2020 Feb; 241():125044. PubMed ID: 31683426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of calcium dihydrogen phosphate addition on carbon retention and stability of biochars derived from cellulose, hemicellulose, and lignin.
    Li F; Gui X; Ji W; Zhou C
    Chemosphere; 2020 Jul; 251():126335. PubMed ID: 32145573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ball-milled biochar for alternative carbon electrode.
    Lyu H; Yu Z; Gao B; He F; Huang J; Tang J; Shen B
    Environ Sci Pollut Res Int; 2019 May; 26(14):14693-14702. PubMed ID: 30945079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release and sedimentation behaviors of biochar colloids in soil solutions.
    Meng Q; Jin L; Cheng L; Fang J; Lin D
    J Environ Sci (China); 2021 Feb; 100():269-278. PubMed ID: 33279039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal stability and aggregation kinetics of biochar colloids: Effects of pyrolysis temperature, cation type, and humic acid concentrations.
    Yang W; Shang J; Sharma P; Li B; Liu K; Flury M
    Sci Total Environ; 2019 Mar; 658():1306-1315. PubMed ID: 30677992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical porous biochar from plant-based biomass through selectively removing lignin carbon from biochar for enhanced removal of toluene.
    Gan F; Cheng B; Jin Z; Dai Z; Wang B; Yang L; Jiang X
    Chemosphere; 2021 Sep; 279():130514. PubMed ID: 33873068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources.
    Song B; Chen M; Zhao L; Qiu H; Cao X
    Sci Total Environ; 2019 Apr; 661():685-695. PubMed ID: 30684837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.
    Wang H; Wang X; Cui Y; Xue Z; Ba Y
    Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen-containing groups in cellulose and lignin biochar: their roles in U(VI) adsorption.
    Feng Y; Qiu X; Tao Z; E Z; Song J; Dong Y; Liang J; Li P; Fan Q
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):76728-76738. PubMed ID: 35670935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of the effect of pyrolysis process parameters on biochar stability.
    Leng L; Huang H
    Bioresour Technol; 2018 Dec; 270():627-642. PubMed ID: 30220436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release and stability of water dispersible biochar colloids in aquatic environments: Effects of pyrolysis temperature, particle size, and solution chemistry.
    Fang J; Cheng L; Hameed R; Jin L; Wang D; Owens G; Lin D
    Environ Pollut; 2020 May; 260():114037. PubMed ID: 32006888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular markers provide complementary information for biochar characterization before and after HNO
    Chang Z; Tian L; Dong J; Chen Q; Wu M; Pan B
    Chemosphere; 2022 Aug; 301():134422. PubMed ID: 35358560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization Perspectives of Lignin Biochar from Industrial Biomass Residue.
    Naydenova I; Radoykova T; Petrova T; Sandov O; Valchev I
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil colloids affect the aggregation and stability of biochar colloids.
    Gui X; Song B; Chen M; Xu X; Ren Z; Li X; Cao X
    Sci Total Environ; 2021 Jun; 771():145414. PubMed ID: 33736183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of biochar colloids on thallium(I) transport in water-saturated porous media: Effects of pH and ionic strength.
    Cao Y; Ma C; Yao J; Chen W; Gu L; Liu H; Liu C; Xiong J; Huangfu X
    Chemosphere; 2023 Jan; 311(Pt 2):137152. PubMed ID: 36368537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.