These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34464811)

  • 21. Deep learning-based prediction of plant height and crown area of vegetable crops using LiDAR point cloud.
    J R; Nidamanuri RR
    Sci Rep; 2024 Jun; 14(1):14903. PubMed ID: 38942825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Deep Learning Framework for Processing and Classification of Hyperspectral Rice Seed Images Grown under High Day and Night Temperatures.
    Díaz-Martínez V; Orozco-Sandoval J; Manian V; Dhatt BK; Walia H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices.
    Pham HT; Awange J; Kuhn M; Nguyen BV; Bui LK
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Learning Enables Instant and Versatile Estimation of Rice Yield Using Ground-Based RGB Images.
    Tanaka Y; Watanabe T; Katsura K; Tsujimoto Y; Takai T; Tanaka TST; Kawamura K; Saito H; Homma K; Mairoua SG; Ahouanton K; Ibrahim A; Senthilkumar K; Semwal VK; Matute EJG; Corredor E; El-Namaky R; Manigbas N; Quilang EJP; Iwahashi Y; Nakajima K; Takeuchi E; Saito K
    Plant Phenomics; 2023; 5():0073. PubMed ID: 38239736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impacts of meteorological variables and machine learning algorithms on rice yield prediction in Korea.
    Ha S; Kim YT; Im ES; Hur J; Jo S; Kim YS; Shim KM
    Int J Biometeorol; 2023 Nov; 67(11):1825-1838. PubMed ID: 37667047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on Rice Yield Prediction Model Based on Deep Learning.
    Han X; Liu F; He X; Ling F
    Comput Intell Neurosci; 2022; 2022():1922561. PubMed ID: 35515497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Four Major South Korea's Rivers Using Deep Learning Models.
    Lee S; Lee D
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29937531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India.
    Das B; Nair B; Reddy VK; Venkatesh P
    Int J Biometeorol; 2018 Oct; 62(10):1809-1822. PubMed ID: 30043218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of MODIS land surface temperature using new hybrid models based on spatial interpolation techniques and deep learning models.
    Kartal S; Sekertekin A
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):67115-67134. PubMed ID: 35522410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information systems.
    Lim J; Lee KS
    Environ Monit Assess; 2017 Mar; 189(3):96. PubMed ID: 28161882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated use of regional weather forecasting and crop modeling for water stress assessment on rice yield.
    Rajasivaranjan T; Anandhi A; Patel NR; Irannezhad M; Srinivas CV; Veluswamy K; Surendran U; Raja P
    Sci Rep; 2022 Oct; 12(1):16985. PubMed ID: 36216959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of rice plant diseases based on deep transfer learning.
    Chen J; Zhang D; Nanehkaran YA; Li D
    J Sci Food Agric; 2020 May; 100(7):3246-3256. PubMed ID: 32124447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR.
    Huang J; Wang X; Li X; Tian H; Pan Z
    PLoS One; 2013; 8(8):e70816. PubMed ID: 23967112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Malaria Incidence of the Regions Adjacent to the Demilitarized Zone in the Democratic People's Republic of Korea, 2004-2016.
    Kim JH; Lim AY; Cheong HK
    J Korean Med Sci; 2019 Sep; 34(36):e227. PubMed ID: 31538416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring potential of C band synthetic aperture radar imagery to investigate rice crop growth mechanism and productivity.
    Palakuru M; Khadar Babu SK; Chaube NR
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42001-42013. PubMed ID: 33797042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining machine learning and remote sensing-integrated crop modeling for rice and soybean crop simulation.
    Ko J; Shin T; Kang J; Baek J; Sang WG
    Front Plant Sci; 2024; 15():1320969. PubMed ID: 38410726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial intelligence framework for modeling and predicting crop yield to enhance food security in Saudi Arabia.
    Al-Adhaileh MH; Aldhyani THH
    PeerJ Comput Sci; 2022; 8():e1104. PubMed ID: 36262130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstruction of missing spring discharge by using deep learning models with ensemble empirical mode decomposition of precipitation.
    Zhou R; Zhang Y
    Environ Sci Pollut Res Int; 2022 Nov; 29(54):82451-82466. PubMed ID: 35751724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea.
    Kim S; Alizamir M; Zounemat-Kermani M; Kisi O; Singh VP
    J Environ Manage; 2020 Sep; 270():110834. PubMed ID: 32507742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.