BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2505 related articles for article (PubMed ID: 34464837)

  • 1. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation.
    Liu B; Pan D; Shuai Z; Song H
    Comput Methods Programs Biomed; 2022 Jan; 213():106530. PubMed ID: 34813984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised Domain Adaptation Based Image Synthesis and Feature Alignment for Joint Optic Disc and Cup Segmentation.
    Lei H; Liu W; Xie H; Zhao B; Yue G; Lei B
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):90-102. PubMed ID: 34061755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A medical unsupervised domain adaptation framework based on Fourier transform image translation and multi-model ensemble self-training strategy.
    Jiang K; Gong T; Quan L
    Int J Comput Assist Radiol Surg; 2023 Oct; 18(10):1885-1894. PubMed ID: 37010674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images.
    Kadambi S; Wang Z; Xing E
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1205-1213. PubMed ID: 32445127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation.
    Wang S; Yu L; Yang X; Fu CW; Heng PA
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2485-2495. PubMed ID: 30794170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks.
    Xie Z; Ling T; Yang Y; Shu R; Liu BJ
    J Med Syst; 2020 Mar; 44(5):96. PubMed ID: 32193703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-supervised pre-training for joint optic disc and cup segmentation via attention-aware network.
    Zhou Z; Zheng Y; Zhou X; Yu J; Rong S
    BMC Ophthalmol; 2024 Mar; 24(1):98. PubMed ID: 38438876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AADG: Automatic Augmentation for Domain Generalization on Retinal Image Segmentation.
    Lyu J; Zhang Y; Huang Y; Lin L; Cheng P; Tang X
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3699-3711. PubMed ID: 35862336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolutional autoencoder joint boundary and mask adversarial learning for fundus image segmentation.
    Zhang X; Song J; Wang C; Zhou Z
    Front Hum Neurosci; 2022; 16():1043569. PubMed ID: 36561837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noisy-As-Clean: Learning Self-supervised Denoising from Corrupted Image.
    Xu J; Huang Y; Cheng MM; Liu L; Zhu F; Xu Z; Shao L
    IEEE Trans Image Process; 2020 Sep; PP():. PubMed ID: 32997627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to segment subcortical structures from noisy annotations with a novel uncertainty-reliability aware learning framework.
    Li X; Wei Y; Hu Q; Wang C; Yang J
    Comput Biol Med; 2022 Dec; 151(Pt B):106326. PubMed ID: 36442274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning.
    Zhu Y; Hu P; Li X; Tian Y; Bai X; Liang T; Li J
    Med Phys; 2022 Sep; 49(9):5799-5818. PubMed ID: 35833617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning.
    Wang Y; Yu X; Wu C
    J Digit Imaging; 2022 Jun; 35(3):638-653. PubMed ID: 35212860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LE-UDA: Label-Efficient Unsupervised Domain Adaptation for Medical Image Segmentation.
    Zhao Z; Zhou F; Xu K; Zeng Z; Guan C; Zhou SK
    IEEE Trans Med Imaging; 2023 Mar; 42(3):633-646. PubMed ID: 36227829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsupervised Domain Adaptation with Shape Constraint and Triple Attention for Joint Optic Disc and Cup Segmentation.
    Zhang F; Li S; Deng J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TUNet and domain adaptation based learning for joint optic disc and cup segmentation.
    Li Z; Zhao C; Han Z; Hong C
    Comput Biol Med; 2023 Sep; 163():107209. PubMed ID: 37442009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning based domain adaptation for mitochondria segmentation on EM volumes.
    Franco-Barranco D; Pastor-Tronch J; González-Marfil A; Muñoz-Barrutia A; Arganda-Carreras I
    Comput Methods Programs Biomed; 2022 Jul; 222():106949. PubMed ID: 35753105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 126.