BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34464849)

  • 1. Discrepant oxidation behavior of ferric ion and hydroxyl radical on syringic acid and vanillic acid in atmospheric Fenton-like system.
    Zhao J; Wang Y; Liu H; Wu Y; Dong W
    Chemosphere; 2022 Jan; 287(Pt 1):132022. PubMed ID: 34464849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vanillic and syringic acids from biomass burning: Behaviour during Fenton-like oxidation in atmospheric aqueous phase and in the absence of light.
    Santos GT; Santos PS; Duarte AC
    J Hazard Mater; 2016 Aug; 313():201-8. PubMed ID: 27085101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of sulfamethoxazole by the heterogeneous Fenton-like reaction between gallic acid and ferrihydrite.
    Huang Y; Yang J
    Ecotoxicol Environ Saf; 2021 Dec; 226():112847. PubMed ID: 34601269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of benzoic acid from biomass burning in atmospheric waters.
    Santos PSM; Cardoso HB; Rocha-Santos TAP; Duarte AC
    Environ Pollut; 2019 Jan; 244():693-704. PubMed ID: 30384075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic Insights into Myofibrillar Protein Oxidation by Fenton Chemistry Regulated by Gallic Acid.
    Liu X; Wang L; He B; Liu Q; Zhu H; Carrier AJ; Oakes KD; Zhang X
    J Agric Food Chem; 2023 Aug; 71(33):12587-12596. PubMed ID: 37561819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.
    Subramanian G; Madras G
    Water Res; 2016 Nov; 104():168-177. PubMed ID: 27522633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces.
    Walter M; Schenkeveld WDC; Geroldinger G; Gille L; Reissner M; Kraemer SM
    Part Fibre Toxicol; 2020 Jan; 17(1):3. PubMed ID: 31959185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.
    Fischbacher A; von Sonntag C; Schmidt TC
    Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fenton-like oxidation of small aromatic acids from biomass burning in water and in the absence of light: implications for atmospheric chemistry.
    Santos PSM; Duarte AC
    Chemosphere; 2015 Jan; 119():786-793. PubMed ID: 25201586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II.
    Maezono T; Tokumura M; Sekine M; Kawase Y
    Chemosphere; 2011 Mar; 82(10):1422-30. PubMed ID: 21146853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers.
    Hwang S; Huling SG; Ko S
    Chemosphere; 2010 Jan; 78(5):563-8. PubMed ID: 19959205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaO
    Pan Y; Su H; Zhu Y; Vafaei Molamahmood H; Long M
    Water Res; 2018 Nov; 145():731-740. PubMed ID: 30216867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti- and prooxidative properties of gallic acid in fenton-type systems.
    Strlic M; Radovic T; Kolar J; Pihlar B
    J Agric Food Chem; 2002 Oct; 50(22):6313-7. PubMed ID: 12381109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles.
    Chen L; Ma J; Li X; Zhang J; Fang J; Guan Y; Xie P
    Environ Sci Technol; 2011 May; 45(9):3925-30. PubMed ID: 21469678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric water and in the absence of light: Identification of intermediates and reaction pathways.
    Santos PSM; Domingues MRM; Duarte AC
    Chemosphere; 2016 Jul; 154():599-603. PubMed ID: 27088537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fenton oxidation of gallic and p-coumaric acids in water assisted by an activated carbon cloth.
    Fontecha-Cámara MA; Álvarez MA; López-Ramón V; Moreno-Castilla C
    Water Sci Technol; 2015; 71(5):789-94. PubMed ID: 25768228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.
    Pang SY; Jiang J; Ma J
    Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH Dependence of Hydroxyl Radical, Ferryl, and/or Ferric Peroxo Species Generation in the Heterogeneous Fenton Process.
    Chen Y; Miller CJ; Waite TD
    Environ Sci Technol; 2022 Jan; 56(2):1278-1288. PubMed ID: 34965094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions.
    Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Jan; 47(2):829-35. PubMed ID: 23231429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.