BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34465028)

  • 1. Nitrate Reduction Stimulates and Is Stimulated by Phenazine-1-Carboxylic Acid Oxidation by Citrobacter portucalensis MBL.
    Tsypin LM; Newman DK
    mBio; 2021 Aug; 12(4):e0226521. PubMed ID: 34465028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetically dissecting the electron transport chain of a soil bacterium reveals a generalizable mechanism for biological phenazine-1-carboxylic acid oxidation.
    Tsypin LMZ; Saunders SH; Chen AW; Newman DK
    PLoS Genet; 2024 May; 20(5):e1011064. PubMed ID: 38709821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically dissecting the electron transport chain of a soil bacterium reveals a generalizable mechanism for biological phenazine-1-carboxylic acid oxidation.
    Tsypin LMZ; Saunders SH; Chen AW; Newman DK
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence and Correlates of Phenazine Resistance in Culturable Bacteria from a Dryland Wheat Field.
    Perry EK; Newman DK
    Appl Environ Microbiol; 2022 Mar; 88(6):e0232021. PubMed ID: 35138927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PhdA Catalyzes the First Step of Phenazine-1-Carboxylic Acid Degradation in Mycobacterium fortuitum.
    Costa KC; Moskatel LS; Meirelles LA; Newman DK
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29483162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms.
    Lin YC; Sekedat MD; Cornell WC; Silva GM; Okegbe C; Price-Whelan A; Vogel C; Dietrich LEP
    J Bacteriol; 2018 May; 200(9):. PubMed ID: 29463605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance.
    Sporer AJ; Beierschmitt C; Bendebury A; Zink KE; Price-Whelan A; Buzzeo MC; Sanchez LM; Dietrich LEP
    Microbiology (Reading); 2018 May; 164(5):790-800. PubMed ID: 29629858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of
    Glasser NR; Wang BX; Hoy JA; Newman DK
    J Biol Chem; 2017 Mar; 292(13):5593-5607. PubMed ID: 28174304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenazines and other redox-active antibiotics promote microbial mineral reduction.
    Hernandez ME; Kappler A; Newman DK
    Appl Environ Microbiol; 2004 Feb; 70(2):921-8. PubMed ID: 14766572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic Degradation of Phenazines Can Generate Energy and Protect Sensitive Organisms from Toxicity.
    Costa KC; Bergkessel M; Saunders S; Korlach J; Newman DK
    mBio; 2015 Oct; 6(6):e01520-15. PubMed ID: 26507234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the interaction between Shewanella oneidensis and phenazine 1-carboxylic acid in the microbial electrochemical processes.
    Yu YY; Zhang Y; Peng L
    Sci Total Environ; 2022 Sep; 838(Pt 3):156501. PubMed ID: 35667430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parsed synthesis of pyocyanin via co-culture enables context-dependent intercellular redox communication.
    Chun K; Stephens K; Wang S; Tsao CY; Payne GF; Bentley WE
    Microb Cell Fact; 2021 Nov; 20(1):215. PubMed ID: 34819093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen.
    Wang Y; Newman DK
    Environ Sci Technol; 2008 Apr; 42(7):2380-6. PubMed ID: 18504969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14.
    Jo J; Price-Whelan A; Cornell WC; Dietrich LEP
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil bacteria protect fungi from phenazines by acting as toxin sponges.
    Dahlstrom KM; Newman DK
    Curr Biol; 2022 Jan; 32(2):275-288.e5. PubMed ID: 34813731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis.
    Ahuja EG; Janning P; Mentel M; Graebsch A; Breinbauer R; Hiller W; Costisella B; Thomashow LS; Mavrodi DV; Blankenfeldt W
    J Am Chem Soc; 2008 Dec; 130(50):17053-61. PubMed ID: 19053436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Draft Genome Sequence of the Redox-Active Enteric Bacterium Citrobacter portucalensis Strain MBL.
    Tsypin LM; Saunders SH; Bar-On Y; Leadbetter JR; Newman DK
    Microbiol Resour Announc; 2020 Aug; 9(32):. PubMed ID: 32763937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of NO
    Heo H; Kwon M; Song B; Yoon S
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32631862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyocyanin and 1-Hydroxyphenazine Promote Anaerobic Killing of Pseudomonas aeruginosa via Single-Electron Transfer with Ferrous Iron.
    Kang J; Cho YH; Lee Y
    Microbiol Spectr; 2022 Dec; 10(6):e0231222. PubMed ID: 36321913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines.
    Briard B; Bomme P; Lechner BE; Mislin GL; Lair V; Prévost MC; Latgé JP; Haas H; Beauvais A
    Sci Rep; 2015 Feb; 5():8220. PubMed ID: 25665925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.