BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34465093)

  • 1. Metabolic Engineering of
    Benninghaus L; Walter T; Mindt M; Risse JM; Wendisch VF
    J Agric Food Chem; 2021 Sep; 69(34):9849-9858. PubMed ID: 34465093
    [No Abstract]   [Full Text] [Related]  

  • 2. Fermentative Production of
    Mindt M; Walter T; Risse JM; Wendisch VF
    Front Bioeng Biotechnol; 2018; 6():159. PubMed ID: 30474025
    [No Abstract]   [Full Text] [Related]  

  • 3. γ-Glutamylation of Isopropylamine by Fermentation.
    Benninghaus L; Zagami L; Tassini G; Meyer F; Wendisch VF
    Chembiochem; 2024 Jan; 25(2):e202300608. PubMed ID: 37987374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of synthetic microbial consortia with Corynebacterium glutamicum and Pseudomonas putida: Design, construction, and application to production of γ-glutamylisopropylamide and l-theanine.
    Benninghaus L; Schwardmann LS; Jilg T; Wendisch VF
    Microb Biotechnol; 2024 Jan; 17(1):e14400. PubMed ID: 38206115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid.
    Li J; Ye BC
    Bioresour Technol; 2021 Jan; 319():124239. PubMed ID: 33254462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathway engineering of
    Fan X; Zhang T; Ji Y; Li J; Long K; Yuan Y; Li Y; Xu Q; Chen N; Xie X
    Metab Eng Commun; 2020 Dec; 11():e00151. PubMed ID: 33251110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering.
    Ling C; Peabody GL; Salvachúa D; Kim YM; Kneucker CM; Calvey CH; Monninger MA; Munoz NM; Poirier BC; Ramirez KJ; St John PC; Woodworth SP; Magnuson JK; Burnum-Johnson KE; Guss AM; Johnson CW; Beckham GT
    Nat Commun; 2022 Aug; 13(1):4925. PubMed ID: 35995792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient fermentative production of L-theanine by Corynebacterium glutamicum.
    Ma H; Fan X; Cai N; Zhang D; Zhao G; Wang T; Su R; Yuan M; Ma Q; Zhang C; Xu Q; Xie X; Chen N; Li Y
    Appl Microbiol Biotechnol; 2020 Jan; 104(1):119-130. PubMed ID: 31776607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Efficient Biosynthesis of Protocatechuic Acid via Recombinant
    Li J; Fu J; Yue C; Shang Y; Ye BC
    J Agric Food Chem; 2023 Jul; 71(27):10375-10382. PubMed ID: 37365996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of l-Theanine by Escherichia coli in the Absence of Supplemental Ethylamine.
    Hagihara R; Ohno S; Hayashi M; Tabata K; Endo H
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous utilization of glucose and xylose by metabolically engineered Pseudomonas putida for the production of 3-hydroxypropionic acid.
    Tiwari R; Sathesh-Prabu C; Kim Y; Kuk Lee S
    Bioresour Technol; 2024 Mar; 395():130389. PubMed ID: 38295962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Engineering of
    Li J; Fu J; Shang Y; Wei W; Zhang P; Wang X; Ye BC
    J Agric Food Chem; 2024 Feb; 72(8):4217-4224. PubMed ID: 38356383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy.
    Meijnen JP; Verhoef S; Briedjlal AA; de Winde JH; Ruijssenaars HJ
    Appl Microbiol Biotechnol; 2011 May; 90(3):885-93. PubMed ID: 21287166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate.
    Yang J; Im Y; Kim TH; Lee MJ; Cho S; Na JG; Lee J; Oh BK
    Enzyme Microb Technol; 2020 Jan; 132():109437. PubMed ID: 31731966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440.
    Bentley GJ; Narayanan N; Jha RK; Salvachúa D; Elmore JR; Peabody GL; Black BA; Ramirez K; De Capite A; Michener WE; Werner AZ; Klingeman DM; Schindel HS; Nelson R; Foust L; Guss AM; Dale T; Johnson CW; Beckham GT
    Metab Eng; 2020 May; 59():64-75. PubMed ID: 31931111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering
    Wang Y; Zheng J; Xue Y; Yu B
    J Agric Food Chem; 2024 Mar; 72(12):6500-6508. PubMed ID: 38470347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of biological production of L-theanine.
    Mu W; Zhang T; Jiang B
    Biotechnol Adv; 2015; 33(3-4):335-42. PubMed ID: 25871834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.