These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34465756)

  • 41. LCM-seq reveals the crucial role of LsSOC1 in heat-promoted bolting of lettuce (Lactuca sativa L.).
    Chen Z; Zhao W; Ge D; Han Y; Ning K; Luo C; Wang S; Liu R; Zhang X; Wang Q
    Plant J; 2018 Aug; 95(3):516-528. PubMed ID: 29772090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis.
    Zhang L; Su W; Tao R; Zhang W; Chen J; Wu P; Yan C; Jia Y; Larkin RM; Lavelle D; Truco MJ; Chin-Wo SR; Michelmore RW; Kuang H
    Nat Commun; 2017 Dec; 8(1):2264. PubMed ID: 29273740
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis.
    Guan C; Wu B; Yu T; Wang Q; Krogan NT; Liu X; Jiao Y
    Curr Biol; 2017 Oct; 27(19):2940-2950.e4. PubMed ID: 28943086
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Roles of miR319 and TCP Transcription Factors in Leaf Development.
    Koyama T; Sato F; Ohme-Takagi M
    Plant Physiol; 2017 Oct; 175(2):874-885. PubMed ID: 28842549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density.
    Liu P; Liu J; Dong H; Sun J
    Plant Biotechnol J; 2018 Feb; 16(2):495-506. PubMed ID: 28703466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce.
    Reyes-Chin-Wo S; Wang Z; Yang X; Kozik A; Arikit S; Song C; Xia L; Froenicke L; Lavelle DO; Truco MJ; Xia R; Zhu S; Xu C; Xu H; Xu X; Cox K; Korf I; Meyers BC; Michelmore RW
    Nat Commun; 2017 Apr; 8():14953. PubMed ID: 28401891
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.
    Liu Z; Jia Y; Ding Y; Shi Y; Li Z; Guo Y; Gong Z; Yang S
    Mol Cell; 2017 Apr; 66(1):117-128.e5. PubMed ID: 28344081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TCP factors: new kids on the signaling block.
    Nicolas M; Cubas P
    Curr Opin Plant Biol; 2016 Oct; 33():33-41. PubMed ID: 27310029
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolution of the APETALA2 Gene Lineage in Seed Plants.
    Zumajo-Cardona C; Pabón-Mora N
    Mol Biol Evol; 2016 Jul; 33(7):1818-32. PubMed ID: 27030733
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selection of reference genes for diurnal and developmental time-course real-time PCR expression analyses in lettuce.
    Sgamma T; Pape J; Massiah A; Jackson S
    Plant Methods; 2016; 12():21. PubMed ID: 27011764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptional Responses to the Auxin Hormone.
    Weijers D; Wagner D
    Annu Rev Plant Biol; 2016 Apr; 67():539-74. PubMed ID: 26905654
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Auxin response factors.
    Chandler JW
    Plant Cell Environ; 2016 May; 39(5):1014-28. PubMed ID: 26487015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth.
    Ren H; Gray WM
    Mol Plant; 2015 Aug; 8(8):1153-64. PubMed ID: 25983207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. HISAT: a fast spliced aligner with low memory requirements.
    Kim D; Langmead B; Salzberg SL
    Nat Methods; 2015 Apr; 12(4):357-60. PubMed ID: 25751142
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development.
    Wei B; Zhang J; Pang C; Yu H; Guo D; Jiang H; Ding M; Chen Z; Tao Q; Gu H; Qu LJ; Qin G
    Cell Res; 2015 Jan; 25(1):121-34. PubMed ID: 25378179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Establishing a framework for the Ad/abaxial regulatory network of Arabidopsis: ascertaining targets of class III homeodomain leucine zipper and KANADI regulation.
    Reinhart BJ; Liu T; Newell NR; Magnani E; Huang T; Kerstetter R; Michaels S; Barton MK
    Plant Cell; 2013 Sep; 25(9):3228-49. PubMed ID: 24076978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Leaf development.
    Tsukaya H
    Arabidopsis Book; 2013; 11():e0163. PubMed ID: 23864837
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis.
    Tao Q; Guo D; Wei B; Zhang F; Pang C; Jiang H; Zhang J; Wei T; Gu H; Qu LJ; Qin G
    Plant Cell; 2013 Feb; 25(2):421-37. PubMed ID: 23444332
    [TBL] [Abstract][Full Text] [Related]  

  • 59. APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19.
    Krogan NT; Hogan K; Long JA
    Development; 2012 Nov; 139(22):4180-90. PubMed ID: 23034631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development.
    Yamaguchi T; Nukazuka A; Tsukaya H
    Plant Cell Physiol; 2012 Jul; 53(7):1180-94. PubMed ID: 22619472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.