BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34465864)

  • 1. PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression.
    Yuan S; Wang X; Hou S; Guo T; Lan Y; Yang S; Zhao F; Gao J; Wang Y; Chu Y; Shi J; Cheng T; Yuan W
    Leukemia; 2022 Feb; 36(2):370-382. PubMed ID: 34465864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development.
    de Bock CE; Demeyer S; Degryse S; Verbeke D; Sweron B; Gielen O; Vandepoel R; Vicente C; Vanden Bempt M; Dagklis A; Geerdens E; Bornschein S; Gijsbers R; Soulier J; Meijerink JP; Heinäniemi M; Teppo S; Bouvy-Liivrand M; Lohi O; Radaelli E; Cools J
    Cancer Discov; 2018 May; 8(5):616-631. PubMed ID: 29496663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL.
    Degryse S; Bornschein S; de Bock CE; Leroy E; Vanden Bempt M; Demeyer S; Jacobs K; Geerdens E; Gielen O; Soulier J; Harrison CJ; Constantinescu SN; Cools J
    Blood; 2018 Jan; 131(4):421-425. PubMed ID: 29187379
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Wendorff AA; Quinn SA; Rashkovan M; Madubata CJ; Ambesi-Impiombato A; Litzow MR; Tallman MS; Paietta E; Paganin M; Basso G; Gastier-Foster JM; Loh ML; Rabadan R; Van Vlierberghe P; Ferrando AA
    Cancer Discov; 2019 Mar; 9(3):436-451. PubMed ID: 30567843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model.
    Degryse S; de Bock CE; Cox L; Demeyer S; Gielen O; Mentens N; Jacobs K; Geerdens E; Gianfelici V; Hulselmans G; Fiers M; Aerts S; Meijerink JP; Tousseyn T; Cools J
    Blood; 2014 Nov; 124(20):3092-100. PubMed ID: 25193870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure of tofacitinib to achieve an objective response in a
    Wong J; Wall M; Corboy GP; Taubenheim N; Gregory GP; Opat S; Shortt J
    Cold Spring Harb Mol Case Stud; 2020 Aug; 6(4):. PubMed ID: 32843425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of mutant alleles of JAK3 in pediatric patients with acute lymphoblastic leukemia.
    Yin C; Sandoval C; Baeg GH
    Leuk Lymphoma; 2015 May; 56(5):1502-6. PubMed ID: 25146434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia.
    Agarwal A; MacKenzie RJ; Eide CA; Davare MA; Watanabe-Smith K; Tognon CE; Mongoue-Tchokote S; Park B; Braziel RM; Tyner JW; Druker BJ
    Oncogene; 2015 Jun; 34(23):2991-9. PubMed ID: 25109334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia.
    Broux M; Prieto C; Demeyer S; Vanden Bempt M; Alberti-Servera L; Lodewijckx I; Vandepoel R; Mentens N; Gielen O; Jacobs K; Geerdens E; Vicente C; de Bock CE; Cools J
    Blood; 2019 Oct; 134(16):1323-1336. PubMed ID: 31492675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The JAK3
    Lahera A; Vela-Martín L; Fernández-Navarro P; Llamas P; López-Lorenzo JL; Cornago J; Santos J; Fernández-Piqueras J; Villa-Morales M
    Mol Carcinog; 2024 Jan; 63(1):5-10. PubMed ID: 37712558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia.
    Wang Q; Qiu H; Jiang H; Wu L; Dong S; Pan J; Wang W; Ping N; Xia J; Sun A; Wu D; Xue Y; Drexler HG; Macleod RA; Chen S
    Haematologica; 2011 Dec; 96(12):1808-14. PubMed ID: 21880637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities.
    Losdyck E; Hornakova T; Springuel L; Degryse S; Gielen O; Cools J; Constantinescu SN; Flex E; Tartaglia M; Renauld JC; Knoops L
    J Biol Chem; 2015 Nov; 290(48):29022-34. PubMed ID: 26446793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia.
    Bodaar K; Yamagata N; Barthe A; Landrigan J; Chonghaile TN; Burns M; Stevenson KE; Devidas M; Loh ML; Hunger SP; Wood B; Silverman LB; Teachey DT; Meijerink JP; Letai A; Gutierrez A
    Leukemia; 2022 Jun; 36(6):1499-1507. PubMed ID: 35411095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-128-3p is a novel oncomiR targeting PHF6 in T-cell acute lymphoblastic leukemia.
    Mets E; Van Peer G; Van der Meulen J; Boice M; Taghon T; Goossens S; Mestdagh P; Benoit Y; De Moerloose B; Van Roy N; Poppe B; Vandesompele J; Wendel HG; Van Vlierberghe P; Speleman F; Rondou P
    Haematologica; 2014 Aug; 99(8):1326-33. PubMed ID: 24895337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia.
    Vicente C; Schwab C; Broux M; Geerdens E; Degryse S; Demeyer S; Lahortiga I; Elliott A; Chilton L; La Starza R; Mecucci C; Vandenberghe P; Goulden N; Vora A; Moorman AV; Soulier J; Harrison CJ; Clappier E; Cools J
    Haematologica; 2015 Oct; 100(10):1301-10. PubMed ID: 26206799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3.
    Nakayama J; Yamamoto M; Hayashi K; Satoh H; Bundo K; Kubo M; Goitsuka R; Farrar MA; Kitamura D
    Blood; 2009 Feb; 113(7):1483-92. PubMed ID: 19047679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations.
    Spinella JF; Cassart P; Richer C; Saillour V; Ouimet M; Langlois S; St-Onge P; Sontag T; Healy J; Minden MD; Sinnett D
    Oncotarget; 2016 Oct; 7(40):65485-65503. PubMed ID: 27602765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia.
    Degryse S; de Bock CE; Demeyer S; Govaerts I; Bornschein S; Verbeke D; Jacobs K; Binos S; Skerrett-Byrne DA; Murray HC; Verrills NM; Van Vlierberghe P; Cools J; Dun MD
    Leukemia; 2018 Mar; 32(3):788-800. PubMed ID: 28852199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JAK3 pathway is constitutively active in B-lineage acute lymphoblastic leukemia.
    Uckun FM; Pitt J; Qazi S
    Expert Rev Anticancer Ther; 2011 Jan; 11(1):37-48. PubMed ID: 21070101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma.
    Kameda T; Shide K; Shimoda HK; Hidaka T; Kubuki Y; Katayose K; Taniguchi Y; Sekine M; Kamiunntenn A; Maeda K; Nagata K; Matsunaga T; Shimoda K
    Int J Hematol; 2010 Sep; 92(2):320-5. PubMed ID: 20697856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.