These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34466411)

  • 1. LZerD Protein-Protein Docking Webserver Enhanced With
    Christoffer C; Bharadwaj V; Luu R; Kihara D
    Front Mol Biosci; 2021; 8():724947. PubMed ID: 34466411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LZerD webserver for pairwise and multiple protein-protein docking.
    Christoffer C; Chen S; Bharadwaj V; Aderinwale T; Kumar V; Hormati M; Kihara D
    Nucleic Acids Res; 2021 Jul; 49(W1):W359-W365. PubMed ID: 33963854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pairwise and multimeric protein-protein docking using the LZerD program suite.
    Esquivel-Rodriguez J; Filos-Gonzalez V; Li B; Kihara D
    Methods Mol Biol; 2014; 1137():209-34. PubMed ID: 24573484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved performance in CAPRI round 37 using LZerD docking and template-based modeling with combined scoring functions.
    Peterson LX; Shin WH; Kim H; Kihara D
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):311-320. PubMed ID: 28845596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling protein-nucleic acid complexes with extremely large conformational changes using Flex-LZerD.
    Christoffer C; Kihara D
    Proteomics; 2023 Sep; 23(17):e2200322. PubMed ID: 36529945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human and server docking prediction for CAPRI round 30-35 using LZerD with combined scoring functions.
    Peterson LX; Kim H; Esquivel-Rodriguez J; Roy A; Han X; Shin WH; Zhang J; Terashi G; Lee M; Kihara D
    Proteins; 2017 Mar; 85(3):513-527. PubMed ID: 27654025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein docking prediction using predicted protein-protein interface.
    Li B; Kihara D
    BMC Bioinformatics; 2012 Jan; 13():7. PubMed ID: 22233443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the assembly order of multimeric heteroprotein complexes.
    Peterson LX; Togawa Y; Esquivel-Rodriguez J; Terashi G; Christoffer C; Roy A; Shin WH; Kihara D
    PLoS Comput Biol; 2018 Jan; 14(1):e1005937. PubMed ID: 29329283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and enhancement of the LZerD protein assembly pipeline in CAPRI 38-46.
    Christoffer C; Terashi G; Shin WH; Aderinwale T; Maddhuri Venkata Subramaniya SR; Peterson L; Verburgt J; Kihara D
    Proteins; 2020 Aug; 88(8):948-961. PubMed ID: 31697428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-LZerD: multiple protein docking for asymmetric complexes.
    Esquivel-Rodríguez J; Yang YD; Kihara D
    Proteins; 2012 Jul; 80(7):1818-33. PubMed ID: 22488467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A benchmark testing ground for integrating homology modeling and protein docking.
    Bohnuud T; Luo L; Wodak SJ; Bonvin AM; Weng Z; Vajda S; Schueler-Furman O; Kozakov D
    Proteins; 2017 Jan; 85(1):10-16. PubMed ID: 27172383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IDP-LZerD: Software for Modeling Disordered Protein Interactions.
    Christoffer C; Kihara D
    Methods Mol Biol; 2020; 2165():231-244. PubMed ID: 32621228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path-LZerD: Predicting Assembly Order of Multimeric Protein Complexes.
    Terashi G; Christoffer C; Kihara D
    Methods Mol Biol; 2020; 2074():95-112. PubMed ID: 31583633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fastDRH: a webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB(GB)SA computation.
    Wang Z; Pan H; Sun H; Kang Y; Liu H; Cao D; Hou T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain-Based Protein Docking with Extremely Large Conformational Changes.
    Christoffer C; Kihara D
    J Mol Biol; 2022 Nov; 434(21):167820. PubMed ID: 36089054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CSAlign and CSAlign-Dock: Structure alignment of ligands considering full flexibility and application to protein-ligand docking.
    Kwon S; Seok C
    Comput Struct Biotechnol J; 2023; 21():1-10. PubMed ID: 36514334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers.
    Pierce BG; Wiehe K; Hwang H; Kim BH; Vreven T; Weng Z
    Bioinformatics; 2014 Jun; 30(12):1771-3. PubMed ID: 24532726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of conformation sampling strategies in genetic algorithm for multiple protein docking.
    Esquivel-Rodríguez J; Kihara D
    BMC Proc; 2012 Nov; 6 Suppl 7(Suppl 7):S4. PubMed ID: 23173833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization.
    Lee H; Heo L; Lee MS; Seok C
    Nucleic Acids Res; 2015 Jul; 43(W1):W431-5. PubMed ID: 25969449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Protein-Protein or Protein-DNA/RNA Complexes Using the HDOCK Webserver.
    Yan Y; Huang SY
    Methods Mol Biol; 2020; 2165():217-229. PubMed ID: 32621227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.