These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34467228)

  • 21. Training protocol for probabilistic Pavlovian conditioning in mice using an open-source head-fixed setup.
    Hegedüs P; Velencei A; Belval CH; Heckenast J; Hangya B
    STAR Protoc; 2021 Sep; 2(3):100795. PubMed ID: 34522902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hippocampal place fields: relationship between degree of field overlap and cross-correlations within ensembles of hippocampal neurons.
    Hampson RE; Byrd DR; Konstantopoulos JK; Bunn T; Deadwyler SA
    Hippocampus; 1996; 6(3):281-93. PubMed ID: 8841827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hippocampal Global Remapping Can Occur without Input from the Medial Entorhinal Cortex.
    Schlesiger MI; Boublil BL; Hales JB; Leutgeb JK; Leutgeb S
    Cell Rep; 2018 Mar; 22(12):3152-3159. PubMed ID: 29562172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphometric Analysis of Hippocampal and Neocortical Pyramidal Neurons in a Mouse Model of Late Onset Alzheimer's Disease.
    Mehder RH; Bennett BM; Andrew RD
    J Alzheimers Dis; 2020; 74(4):1069-1083. PubMed ID: 32144984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hippocampal remapping is constrained by sparseness rather than capacity.
    Kammerer A; Leibold C
    PLoS Comput Biol; 2014 Dec; 10(12):e1003986. PubMed ID: 25474570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating Neural Correlates of Behavior Through In Vivo Electrophysiology.
    Halladay LR
    Curr Protoc; 2023 May; 3(5):e769. PubMed ID: 37154436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hippocampal Remapping and Its Entorhinal Origin.
    Latuske P; Kornienko O; Kohler L; Allen K
    Front Behav Neurosci; 2017; 11():253. PubMed ID: 29354038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gateway identity and spatial remapping in a combined grid and place cell attractor.
    Baumann T; Mallot HA
    Neural Netw; 2023 Jan; 157():226-239. PubMed ID: 36371966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. OSERR: an open-source standalone electrophysiology recording system for rodents.
    Cheng N; Murari K
    Sci Rep; 2020 Oct; 10(1):16996. PubMed ID: 33046761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global remapping in granule cells and mossy cells of the mouse dentate gyrus.
    Kim SH; GoodSmith D; Temme SJ; Moriya F; Ming GL; Christian KM; Song H; Knierim JJ
    Cell Rep; 2023 Apr; 42(4):112334. PubMed ID: 37043350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hippocampal spike-time correlations and place field overlaps during open field foraging.
    Monsalve-Mercado MM; Roudi Y
    Hippocampus; 2020 Apr; 30(4):354-366. PubMed ID: 31675168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments.
    Sharif F; Tayebi B; Buzsáki G; Royer S; Fernandez-Ruiz A
    Neuron; 2021 Jan; 109(2):363-376.e6. PubMed ID: 33217328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic coding of dorsal hippocampal neurons between tasks that differ in structure and memory demand.
    Hallock HL; Griffin AL
    Hippocampus; 2013 Feb; 23(2):169-86. PubMed ID: 23034771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased size and stability of CA1 and CA3 place fields in HCN1 knockout mice.
    Hussaini SA; Kempadoo KA; Thuault SJ; Siegelbaum SA; Kandel ER
    Neuron; 2011 Nov; 72(4):643-53. PubMed ID: 22099465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale neural ensemble recording in the brains of freely behaving mice.
    Lin L; Chen G; Xie K; Zaia KA; Zhang S; Tsien JZ
    J Neurosci Methods; 2006 Jul; 155(1):28-38. PubMed ID: 16554093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptable toolbox to characterize Alzheimer's disease pathology in mouse models.
    Huang Y; Lemke G
    STAR Protoc; 2022 Dec; 3(4):101891. PubMed ID: 36472212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription of the immediate-early gene Arc in CA1 of the hippocampus reveals activity differences along the proximodistal axis that are attenuated by advanced age.
    Hartzell AL; Burke SN; Hoang LT; Lister JP; Rodriguez CN; Barnes CA
    J Neurosci; 2013 Feb; 33(8):3424-33. PubMed ID: 23426670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal coding and rate remapping: Representation of nonspatial information in the hippocampus.
    Sanders H; Ji D; Sasaki T; Leutgeb JK; Wilson MA; Lisman JE
    Hippocampus; 2019 Feb; 29(2):111-127. PubMed ID: 30129985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experience-dependent contextual codes in the hippocampus.
    Plitt MH; Giocomo LM
    Nat Neurosci; 2021 May; 24(5):705-714. PubMed ID: 33753945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium imaging of adult-born neurons in freely moving mice.
    Carrier-Ruiz A; Sugaya Y; Kumar D; Vergara P; Koyanagi I; Srinivasan S; Naoi T; Kano M; Sakaguchi M
    STAR Protoc; 2021 Mar; 2(1):100238. PubMed ID: 33458703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.