These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34467232)

  • 1. A computational approach for identification of core modules from a co-expression network and GWAS data.
    Sabik OL; Ackert-Bicknell CL; Farber CR
    STAR Protoc; 2021 Sep; 2(3):100768. PubMed ID: 34467232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FunGraph: A statistical protocol to reconstruct omnigenic multilayer interactome networks for complex traits.
    Dong A; Feng L; Yang D; Wu S; Zhao J; Wang J; Wu R
    STAR Protoc; 2021 Dec; 2(4):100985. PubMed ID: 34927094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach to generate highly conserved gene co-expression networks with RNA-seq data.
    Arshad Z; McDonald JF
    STAR Protoc; 2022 Jun; 3(2):101432. PubMed ID: 35677606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using biological networks to integrate, visualize and analyze genomics data.
    Charitou T; Bryan K; Lynn DJ
    Genet Sel Evol; 2016 Mar; 48():27. PubMed ID: 27036106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a Core Module for Bone Mineral Density through the Integration of a Co-expression Network and GWAS Data.
    Sabik OL; Calabrese GM; Taleghani E; Ackert-Bicknell CL; Farber CR
    Cell Rep; 2020 Sep; 32(11):108145. PubMed ID: 32937138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules.
    Yao X; Yan J; Liu K; Kim S; Nho K; Risacher SL; Greene CS; Moore JH; Saykin AJ; Shen L;
    Bioinformatics; 2017 Oct; 33(20):3250-3257. PubMed ID: 28575147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of network module identification across complex diseases.
    Choobdar S; Ahsen ME; Crawford J; Tomasoni M; Fang T; Lamparter D; Lin J; Hescott B; Hu X; Mercer J; Natoli T; Narayan R; ; Subramanian A; Zhang JD; Stolovitzky G; Kutalik Z; Lage K; Slonim DK; Saez-Rodriguez J; Cowen LJ; Bergmann S; Marbach D
    Nat Methods; 2019 Sep; 16(9):843-852. PubMed ID: 31471613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-expression pan-network reveals genes involved in complex traits within maize pan-genome.
    Cagirici HB; Andorf CM; Sen TZ
    BMC Plant Biol; 2022 Dec; 22(1):595. PubMed ID: 36529716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel susceptibility genes associated with seven autoimmune disorders using whole genome molecular interaction networks.
    Kara S; Pirela-Morillo GA; Gilliam CT; Wilson GD
    J Autoimmun; 2019 Feb; 97():48-58. PubMed ID: 30391024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Master regulator activity QTL protocol to implicate regulatory pathways potentially mediating GWAS signals using eQTL data.
    Hoskins JW; Christensen TA; Amundadottir LT
    STAR Protoc; 2023 Sep; 4(3):102362. PubMed ID: 37330907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies.
    Li B; Dong J; Yu J; Fan Y; Shang L; Zhou X; Bai Y
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):191. PubMed ID: 33371893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis.
    Duan S; Luo X; Dong C
    Gene; 2013 Dec; 531(2):347-54. PubMed ID: 23994195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SigMod: an exact and efficient method to identify a strongly interconnected disease-associated module in a gene network.
    Liu Y; Brossard M; Roqueiro D; Margaritte-Jeannin P; Sarnowski C; Bouzigon E; Demenais F
    Bioinformatics; 2017 May; 33(10):1536-1544. PubMed ID: 28069594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrative functional genomics framework for effective identification of novel regulatory variants in genome-phenome studies.
    Zhao J; Cheng F; Jia P; Cox N; Denny JC; Zhao Z
    Genome Med; 2018 Jan; 10(1):7. PubMed ID: 29378629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative genomics analysis of various omics data and networks identify risk genes and variants vulnerable to childhood-onset asthma.
    Ma X; Wang P; Xu G; Yu F; Ma Y
    BMC Med Genomics; 2020 Aug; 13(1):123. PubMed ID: 32867763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of transcriptional regulatory networks using total RNA-seq data.
    Chouvarine P; Hansmann G
    STAR Protoc; 2021 Sep; 2(3):100769. PubMed ID: 34485938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Metabochip in diverse populations from the International HapMap Project in the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) project.
    Crawford DC; Goodloe R; Brown-Gentry K; Wilson S; Roberson J; Gillani NB; Ritchie MD; Dilks HH; Bush WS
    Pac Symp Biocomput; 2013; ():188-99. PubMed ID: 23424124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder.
    Polimanti R; Gelernter J
    PLoS Genet; 2017 Feb; 13(2):e1006618. PubMed ID: 28187187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting local genetic correlations with scan statistics.
    Guo H; Li JJ; Lu Q; Hou L
    Nat Commun; 2021 Apr; 12(1):2033. PubMed ID: 33795679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breakdown of multiple sclerosis genetics to identify an integrated disease network and potential variant mechanisms.
    Shepard CJ; Cline SG; Hinds D; Jahanbakhsh S; Prokop JW
    Physiol Genomics; 2019 Nov; 51(11):562-577. PubMed ID: 31482761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.