These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 34467287)
1. Solvation Induction of Free Energy Barriers of Decarboxylation Reactions in Aqueous Solution from Dual-Level QM/MM Simulations. Zhou S; Wang Y; Gao J JACS Au; 2021 Feb; 1(2):233-244. PubMed ID: 34467287 [TBL] [Abstract][Full Text] [Related]
2. Origin of Free Energy Barriers of Decarboxylation and the Reverse Process of CO Zhou S; Nguyen BT; Richard JP; Kluger R; Gao J J Am Chem Soc; 2021 Jan; 143(1):137-141. PubMed ID: 33375792 [TBL] [Abstract][Full Text] [Related]
3. Reversibility and diffusion in mandelythiamin decarboxylation. Searching dynamical effects in decarboxylation reactions. Roca M; Pascual-Ahuir JL; Tuñón I J Am Chem Soc; 2012 Jun; 134(25):10509-14. PubMed ID: 22668129 [TBL] [Abstract][Full Text] [Related]
4. Decarboxylation, CO2 and the reversion problem. Kluger R Acc Chem Res; 2015 Nov; 48(11):2843-9. PubMed ID: 26528892 [TBL] [Abstract][Full Text] [Related]
5. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions. Hori K; Yamaguchi T; Uezu K; Sumimoto M J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291 [TBL] [Abstract][Full Text] [Related]
6. Influence of inter- and intramolecular hydrogen bonding on kemp decarboxylations from QM/MM simulations. Acevedo O; Jorgensen WL J Am Chem Soc; 2005 Jun; 127(24):8829-34. PubMed ID: 15954791 [TBL] [Abstract][Full Text] [Related]
7. Prediction of aqueous free energies of solvation using coupled QM and MM explicit solvent simulations. Sadowsky D; Arey JS Phys Chem Chem Phys; 2020 Apr; 22(15):8021-8034. PubMed ID: 32239035 [TBL] [Abstract][Full Text] [Related]
8. Solvation dynamics and energetics of intramolecular hydride transfer reactions in biomass conversion. Mushrif SH; Varghese JJ; Krishnamurthy CB Phys Chem Chem Phys; 2015 Feb; 17(7):4961-9. PubMed ID: 25591500 [TBL] [Abstract][Full Text] [Related]
9. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents. Farajtabar A; Jaberi F; Gharib F Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):213-20. PubMed ID: 21920804 [TBL] [Abstract][Full Text] [Related]
10. Efficient Strategy for the Calculation of Solvation Free Energies in Water and Chloroform at the Quantum Mechanical/Molecular Mechanical Level. Wang M; Li P; Jia X; Liu W; Shao Y; Hu W; Zheng J; Brooks BR; Mei Y J Chem Inf Model; 2017 Oct; 57(10):2476-2489. PubMed ID: 28933850 [TBL] [Abstract][Full Text] [Related]
11. Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: gas phase, linear solvent response, and non-linear response contributions. Guerard JJ; Tentscher PR; Seijo M; Samuel Arey J Phys Chem Chem Phys; 2015 Jun; 17(22):14811-26. PubMed ID: 25978135 [TBL] [Abstract][Full Text] [Related]
12. Free-energy analysis of the electron-density fluctuation in the quantum-mechanical/molecular-mechanical simulation combined with the theory of energy representation. Matubayasi N; Takahashi H J Chem Phys; 2012 Jan; 136(4):044505. PubMed ID: 22299889 [TBL] [Abstract][Full Text] [Related]
13. Simple and exact approach to the electronic polarization effect on the solvation free energy: formulation for quantum-mechanical/molecular-mechanical system and its applications to aqueous solutions. Takahashi H; Omi A; Morita A; Matubayasi N J Chem Phys; 2012 Jun; 136(21):214503. PubMed ID: 22697554 [TBL] [Abstract][Full Text] [Related]
14. Structure, Dynamics, and Hydration Free Energy of Carbon Dioxide in Aqueous Solution: A Quantum Mechanical/Molecular Mechanics Molecular Dynamics Thermodynamic Integration (QM/MM MD TI) Simulation Study. Prasetyo N; Hofer TS J Chem Theory Comput; 2018 Dec; 14(12):6472-6483. PubMed ID: 30336013 [TBL] [Abstract][Full Text] [Related]
15. Decarboxylation without CO2: why bicarbonate forms directly as trichloroacetate is converted to chloroform. Howe GW; Kluger R J Org Chem; 2014 Nov; 79(22):10972-80. PubMed ID: 25340631 [TBL] [Abstract][Full Text] [Related]
16. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Kong D; Moon PJ; Lui EKJ; Bsharat O; Lundgren RJ Science; 2020 Jul; 369(6503):557-561. PubMed ID: 32554626 [TBL] [Abstract][Full Text] [Related]
17. Cope elimination: elucidation of solvent effects from QM/MM simulations. Acevedo O; Jorgensen WL J Am Chem Soc; 2006 May; 128(18):6141-6. PubMed ID: 16669683 [TBL] [Abstract][Full Text] [Related]
18. A reaction density functional theory study of the solvent effect in prototype S Cai C; Tang W; Qiao C; Jiang P; Lu C; Zhao S; Liu H Phys Chem Chem Phys; 2019 Dec; 21(45):24876-24883. PubMed ID: 31577289 [TBL] [Abstract][Full Text] [Related]
19. The Fate of a Zwitterion in Water from ab Initio Molecular Dynamics: Monoethanolamine (MEA)-CO2. Guido CA; Pietrucci F; Gallet GA; Andreoni W J Chem Theory Comput; 2013 Jan; 9(1):28-32. PubMed ID: 26589008 [TBL] [Abstract][Full Text] [Related]
20. Hydrothermal reactions of formaldehyde and formic acid: free-energy analysis of equilibrium. Matubayasi N; Nakahara M J Chem Phys; 2005 Feb; 122(7):074509. PubMed ID: 15743256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]