These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 34467426)

  • 1. Utility of machine learning of apparent diffusion coefficient (ADC) and T2-weighted (T2W) radiomic features in PI-RADS version 2.1 category 3 lesions to predict prostate cancer diagnosis.
    Lim CS; Abreu-Gomez J; Thornhill R; James N; Al Kindi A; Lim AS; Schieda N
    Abdom Radiol (NY); 2021 Dec; 46(12):5647-5658. PubMed ID: 34467426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2.
    Chen T; Li M; Gu Y; Zhang Y; Yang S; Wei C; Wu J; Li X; Zhao W; Shen J
    J Magn Reson Imaging; 2019 Mar; 49(3):875-884. PubMed ID: 30230108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacokinetic modeling of dynamic contrast-enhanced (DCE)-MRI in PI-RADS category 3 peripheral zone lesions: preliminary study evaluating DCE-MRI as an imaging biomarker for detection of clinically significant prostate cancers.
    Abreu-Gomez J; Lim C; Cron GO; Krishna S; Sadoughi N; Schieda N
    Abdom Radiol (NY); 2021 Sep; 46(9):4370-4380. PubMed ID: 33818626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence of Prostate Cancer in PI-RADS Version 2.1 Transition Zone Atypical Nodules Upgraded by Abnormal DWI: Correlation With MRI-Directed TRUS-Guided Targeted Biopsy.
    Lim CS; Abreu-Gomez J; Carrion I; Schieda N
    AJR Am J Roentgenol; 2021 Mar; 216(3):683-690. PubMed ID: 32755208
    [No Abstract]   [Full Text] [Related]  

  • 5. Evaluation of a multiparametric MRI radiomic-based approach for stratification of equivocal PI-RADS 3 and upgraded PI-RADS 4 prostatic lesions.
    Brancato V; Aiello M; Basso L; Monti S; Palumbo L; Di Costanzo G; Salvatore M; Ragozzino A; Cavaliere C
    Sci Rep; 2021 Jan; 11(1):643. PubMed ID: 33436929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis.
    Wu M; Krishna S; Thornhill RE; Flood TA; McInnes MDF; Schieda N
    J Magn Reson Imaging; 2019 Sep; 50(3):940-950. PubMed ID: 30701625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the Utility of PI-RADS 2.1, ADC Values, and Combined Use of Both, for the Diagnosis of Transition Zone Prostate Cancers.
    Liu X; Xiong Q; Zeng W; Yang R; Wen Y; Li X
    J Comput Assist Tomogr; 2024 Mar-Apr 01; 48(2):206-211. PubMed ID: 38149651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic Resonance Imaging Radiomics-Based Machine Learning Prediction of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions.
    Hectors SJ; Chen C; Chen J; Wang J; Gordon S; Yu M; Al Hussein Al Awamlh B; Sabuncu MR; Margolis DJA; Hu JC
    J Magn Reson Imaging; 2021 Nov; 54(5):1466-1473. PubMed ID: 33970516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI T2w Radiomics-Based Machine Learning Models in Imaging Simulated Biopsy Add Diagnostic Value to PI-RADS in Predicting Prostate Cancer: A Retrospective Diagnostic Study.
    Liu JC; Ruan XH; Chun TT; Yao C; Huang D; Wong HL; Lai CT; Tsang CF; Ho SH; Ng TL; Xu DF; Na R
    Cancers (Basel); 2024 Aug; 16(17):. PubMed ID: 39272801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of observation size and apparent diffusion coefficient (ADC) value in PI-RADS v2.1 assessment category 4 and 5 observations compared to adverse pathological outcomes.
    Abreu-Gomez J; Walker D; Alotaibi T; McInnes MDF; Flood TA; Schieda N
    Eur Radiol; 2020 Aug; 30(8):4251-4261. PubMed ID: 32211965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR Fingerprinting and ADC Mapping for Characterization of Lesions in the Transition Zone of the Prostate Gland.
    Panda A; Obmann VC; Lo WC; Margevicius S; Jiang Y; Schluchter M; Patel IJ; Nakamoto D; Badve C; Griswold MA; Jaeger I; Ponsky LE; Gulani V
    Radiology; 2019 Sep; 292(3):685-694. PubMed ID: 31335285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PI-RADS v2 and ADC values: is there room for improvement?
    Jordan EJ; Fiske C; Zagoria R; Westphalen AC
    Abdom Radiol (NY); 2018 Nov; 43(11):3109-3116. PubMed ID: 29550953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraductal carcinoma of the prostate (IDC-P) lowers apparent diffusion coefficient (ADC) values among intermediate risk prostate cancers.
    Currin S; Flood TA; Krishna S; Ansari A; McInnes MDF; Schieda N
    J Magn Reson Imaging; 2019 Jul; 50(1):279-287. PubMed ID: 30585372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature.
    Zhang L; Zhe X; Tang M; Zhang J; Ren J; Zhang X; Li L
    Contrast Media Mol Imaging; 2021; 2021():7830909. PubMed ID: 35024015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of PI-RADS-dependent prostate cancer classification by quantitative image assessment using radiomics or mean ADC.
    Zhang KS; Schelb P; Kohl S; Radtke JP; Wiesenfarth M; Schimmöller L; Kuder TA; Stenzinger A; Hohenfellner M; Schlemmer HP; Maier-Hein K; Bonekamp D
    Magn Reson Imaging; 2021 Oct; 82():9-17. PubMed ID: 34147597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic performance and reproducibility of T2w based and diffusion weighted imaging (DWI) based PI-RADSv2 lexicon descriptors for prostate MRI.
    Benndorf M; Hahn F; Krönig M; Jilg CA; Krauss T; Langer M; Dovi-Akué P
    Eur J Radiol; 2017 Aug; 93():9-15. PubMed ID: 28668436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of quantitative parameters and radiomic features as inputs into machine learning models to predict the Gleason score of prostate cancer lesions.
    Nai YH; Cheong DLH; Roy S; Kok T; Stephenson MC; Schaefferkoetter J; Totman JJ; Conti M; Eriksson L; Robins EG; Wang Z; Chua WY; Ang BWL; Singha AK; Thamboo TP; Chiong E; Reilhac A
    Magn Reson Imaging; 2023 Jul; 100():64-72. PubMed ID: 36933775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biparametric MRI-based radiomics classifiers for the detection of prostate cancer in patients with PSA serum levels of 4∼10 ng/mL.
    Lu Y; Li B; Huang H; Leng Q; Wang Q; Zhong R; Huang Y; Li C; Yuan R; Zhang Y
    Front Oncol; 2022; 12():1020317. PubMed ID: 36582803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of PI-RADS 2, ADC histogram-derived parameters, and their combination for the diagnosis of peripheral zone prostate cancer.
    Lin WC; Westphalen AC; Silva GE; Chodraui Filho S; Reis RB; Muglia VF
    Abdom Radiol (NY); 2016 Nov; 41(11):2209-2217. PubMed ID: 27364781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of Dynamic Contrast-enhanced and Diffusion MRI to PI-RADS for Detecting Clinically Significant Prostate Cancer.
    Tavakoli AA; Hielscher T; Badura P; Görtz M; Kuder TA; Gnirs R; Schwab C; Hohenfellner M; Schlemmer HP; Bonekamp D
    Radiology; 2023 Jan; 306(1):186-199. PubMed ID: 35972360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.