BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34467587)

  • 1. Hook-basal-body assembly state dictates substrate specificity of the flagellar type-III secretion system.
    Guse A; Halte M; Hüsing S; Erhardt M
    Mol Microbiol; 2021 Oct; 116(4):1189-1200. PubMed ID: 34467587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved GYXLI Motif of FlhA Is Involved in Dynamic Domain Motions of FlhA Required for Flagellar Protein Export.
    Minamino T; Kinoshita M; Inoue Y; Kitao A; Namba K
    Microbiol Spectr; 2022 Aug; 10(4):e0111022. PubMed ID: 35876582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus.
    Minamino T
    FEMS Microbiol Lett; 2018 Jun; 365(12):. PubMed ID: 29850796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Polar Flagellar Transcriptional Program Mediated by Diverse Two-Component Signal Transduction Systems and Basal Flagellar Proteins Is Broadly Conserved in Polar Flagellates.
    Burnham PM; Kolar WP; Hendrixson DR
    mBio; 2020 Mar; 11(2):. PubMed ID: 32127455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The FlhA linker mediates flagellar protein export switching during flagellar assembly.
    Inoue Y; Kinoshita M; Kida M; Takekawa N; Namba K; Imada K; Minamino T
    Commun Biol; 2021 May; 4(1):646. PubMed ID: 34059784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Export via the Type III Secretion System of the Bacterial Flagellum.
    Halte M; Erhardt M
    Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33572887
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Terashima H; Kawamoto A; Tatsumi C; Namba K; Minamino T; Imada K
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Analysis of the Salmonella FliE Protein That Forms the Base of the Flagellar Axial Structure.
    Hendriksen JJ; Lee HJ; Bradshaw AJ; Namba K; Chevance FFV; Minamino T; Hughes KT
    mBio; 2021 Oct; 12(5):e0239221. PubMed ID: 34579566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of a Novel Inner Membrane-Associated Bacterial Structure Related to the Flagellar Type III Secretion System.
    Kaplan M; Oikonomou CM; Wood CR; Chreifi G; Ghosal D; Dobro MJ; Yao Q; Pal RR; Baidya AK; Liu Y; Maggi S; McDowall AW; Ben-Yehuda S; Rosenshine I; Briegel A; Beeby M; Chang YW; Shaffer CL; Jensen GJ
    J Bacteriol; 2022 Aug; 204(8):e0014422. PubMed ID: 35862756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of the secretion capability of early and late flagellar type III secretion substrates.
    Singer HM; Erhardt M; Hughes KT
    Mol Microbiol; 2014 Aug; 93(3):505-20. PubMed ID: 24946091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the FliK molecular ruler in hook-length control in Salmonella enterica.
    Erhardt M; Hirano T; Su Y; Paul K; Wee DH; Mizuno S; Aizawa S; Hughes KT
    Mol Microbiol; 2010 Mar; 75(5):1272-84. PubMed ID: 20132451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FliK-Driven Conformational Rearrangements of FlhA and FlhB Are Required for Export Switching of the Flagellar Protein Export Apparatus.
    Minamino T; Inoue Y; Kinoshita M; Namba K
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31712281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FliH and FliI help FlhA bring strict order to flagellar protein export in Salmonella.
    Kinoshita M; Minamino T; Uchihashi T; Namba K
    Commun Biol; 2024 Mar; 7(1):366. PubMed ID: 38531947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of the Transmembrane Polypeptide Channel Complex of the Salmonella Flagellar Type III Secretion System.
    Kinoshita M; Namba K; Minamino T
    Methods Mol Biol; 2023; 2646():3-15. PubMed ID: 36842101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An infrequent molecular ruler controls flagellar hook length in Salmonella enterica.
    Erhardt M; Singer HM; Wee DH; Keener JP; Hughes KT
    EMBO J; 2011 Jun; 30(14):2948-61. PubMed ID: 21654632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent Microscopy Techniques to Study Hook Length Control and Flagella Formation.
    Erhardt M
    Methods Mol Biol; 2017; 1593():37-46. PubMed ID: 28389943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a new export signal that targets early subunits to the flagellar type III secretion export machinery.
    Bryant OJ; Fraser GM
    mBio; 2024 Mar; 15(3):e0306723. PubMed ID: 38376149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Autonomous Construction of the Flagellar Axial Structure in Inverted Membrane Vesicles.
    Terashima H; Tatsumi C; Kawamoto A; Namba K; Minamino T; Imada K
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31940802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and Characterization of the Bacterial Flagellar Basal Body from Salmonella enterica.
    Aizawa SI
    Methods Mol Biol; 2017; 1593():87-96. PubMed ID: 28389946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Homologous Components of Flagellar Type III Protein Apparatus Have Acquired a Novel Function to Control Twitching Motility in a Non-Flagellated Biocontrol Bacterium.
    Fulano AM; Shen D; Kinoshita M; Chou SH; Qian G
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32392834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.