These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 3446779)

  • 1. Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man.
    Crook JM; Lee BB; Tigwell DA; Valberg A
    J Physiol; 1987 Nov; 392():193-211. PubMed ID: 3446779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker.
    Lee BB; Martin PR; Valberg A
    J Physiol; 1989 Jul; 414():223-43. PubMed ID: 2607430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colour and brightness signals of parvocellular lateral geniculate neurons.
    Creutzfeldt O; Lee BB; Valberg A
    Exp Brain Res; 1986; 63(1):21-34. PubMed ID: 3732446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response saturation of monochromatic increments on intense achromatic backgrounds: implications for color-opponent organization in human vision.
    Drum B; Sternheim CE
    J Opt Soc Am A Opt Image Sci Vis; 2005 Oct; 22(10):2107-19. PubMed ID: 16277281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of responses of spectrally-opponent neurones in the macaque lateral geniculate nucleus to chromatic and achromatic light stimuli.
    Valberg A; Lee BB; Tryti J
    Vision Res; 1987; 27(6):867-82. PubMed ID: 3660649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neurophysiological correlates of colour and brightness contrast in lateral geniculate neurons. I. Population analysis.
    Creutzfeldt OD; Crook JM; Kastner S; Li CY; Pei X
    Exp Brain Res; 1991; 87(1):3-21. PubMed ID: 1756832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey.
    Creutzfeldt OD; Lee BB; Elepfandt A
    Exp Brain Res; 1979 May; 35(3):527-45. PubMed ID: 110613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies.
    Cooper B; Sun H; Lee BB
    J Opt Soc Am A Opt Image Sci Vis; 2012 Feb; 29(2):A314-23. PubMed ID: 22330395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings.
    Rovamo JM; Kankaanpää MI; Kukkonen H
    Vision Res; 1999 Jul; 39(14):2387-98. PubMed ID: 10367059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal dynamics of chromatic tuning in macaque primary visual cortex.
    Cottaris NP; De Valois RL
    Nature; 1998 Oct; 395(6705):896-900. PubMed ID: 9804422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus.
    Roy S; Jayakumar J; Martin PR; Dreher B; Saalmann YB; Hu D; Vidyasagar TR
    Eur J Neurosci; 2009 Oct; 30(8):1517-26. PubMed ID: 19821840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation.
    Lee BB; Martin PR; Valberg A; Kremers J
    J Opt Soc Am A; 1993 Jun; 10(6):1403-12. PubMed ID: 8320597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus.
    Reid RC; Shapley RM
    Nature; 1992 Apr; 356(6371):716-8. PubMed ID: 1570016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separate colour-opponent mechanisms underlie the detection and discrimination of moving chromatic targets.
    Willis A; Anderson SJ
    Proc Biol Sci; 1998 Dec; 265(1413):2435-41. PubMed ID: 9921683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatic and achromatic vision of macaques: role of the P pathway.
    Merigan WH
    J Neurosci; 1989 Mar; 9(3):776-83. PubMed ID: 2926482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation.
    Virsu V; Lee BB
    J Neurophysiol; 1983 Oct; 50(4):864-78. PubMed ID: 6631467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatic mechanisms in lateral geniculate nucleus of macaque.
    Derrington AM; Krauskopf J; Lennie P
    J Physiol; 1984 Dec; 357():241-65. PubMed ID: 6512691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation.
    Sun H; Cooper B; Lee BB
    Vision Res; 2012 Mar; 56():28-37. PubMed ID: 22306680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast.
    Lee BB; Valberg A; Tigwell DA; Tryti J
    Proc R Soc Lond B Biol Sci; 1987 Apr; 230(1260):293-314. PubMed ID: 2884673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission of blue (S) cone signals through the primate lateral geniculate nucleus.
    Tailby C; Szmajda BA; Buzás P; Lee BB; Martin PR
    J Physiol; 2008 Dec; 586(24):5947-67. PubMed ID: 18955378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.