These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34468000)

  • 1. Investigating the morphological dynamics of the plasma membrane by high-speed atomic force microscopy.
    Yu Y; Yoshimura SH
    J Cell Sci; 2021 Sep; 134(17):. PubMed ID: 34468000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis.
    Yoshida A; Sakai N; Uekusa Y; Imaoka Y; Itagaki Y; Suzuki Y; Yoshimura SH
    PLoS Biol; 2018 May; 16(5):e2004786. PubMed ID: 29723197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy.
    Yoshida A; Sakai N; Uekusa Y; Deguchi K; Gilmore JL; Kumeta M; Ito S; Takeyasu K
    Genes Cells; 2015 Feb; 20(2):85-94. PubMed ID: 25440894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes.
    Uchihashi T; Scheuring S
    Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):229-240. PubMed ID: 28716648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
    Umakoshi T; Fukuda S; Iino R; Uchihashi T; Ando T
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129325. PubMed ID: 30890438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed atomic force microscopy imaging of live mammalian cells.
    Shibata M; Watanabe H; Uchihashi T; Ando T; Yasuda R
    Biophys Physicobiol; 2017; 14():127-135. PubMed ID: 28900590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid high-speed atomic force-optical microscope for visualizing single membrane proteins on eukaryotic cells.
    Colom A; Casuso I; Rico F; Scheuring S
    Nat Commun; 2013; 4():2155. PubMed ID: 23857417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule imaging on living bacterial cell surface by high-speed AFM.
    Yamashita H; Taoka A; Uchihashi T; Asano T; Ando T; Fukumori Y
    J Mol Biol; 2012 Sep; 422(2):300-9. PubMed ID: 22613761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy.
    Zhang Y; Yoshida A; Sakai N; Uekusa Y; Kumeta M; Yoshimura SH
    Microscopy (Oxf); 2017 Aug; 66(4):272-282. PubMed ID: 28531263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters.
    Heath GR; Scheuring S
    Curr Opin Struct Biol; 2019 Aug; 57():93-102. PubMed ID: 30878714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.
    Zhang X; Ren J; Wang J; Li S; Zou Q; Gao N
    J Cell Physiol; 2018 Aug; 233(8):5908-5919. PubMed ID: 29243828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in bioimaging with high-speed atomic force microscopy.
    Uchihashi T; Ganser C
    Biophys Rev; 2020 Apr; 12(2):363-369. PubMed ID: 32172451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlative fluorescence and atomic force microscopy to advance the bio-physical characterisation of co-culture of living cells.
    Moura CC; Miranda A; Oreffo ROC; De Beule PAA
    Biochem Biophys Res Commun; 2020 Aug; 529(2):392-397. PubMed ID: 32703441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying dynamic membrane structures with atomic-force microscopy and confocal imaging.
    Timmel T; Schuelke M; Spuler S
    Microsc Microanal; 2014 Apr; 20(2):514-20. PubMed ID: 24524258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells.
    Shibata M; Uchihashi T; Ando T; Yasuda R
    Sci Rep; 2015 Mar; 5():8724. PubMed ID: 25735540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy of microvillous cell surface dynamics at fixed and living alveolar type II cells.
    Hecht E; Usmani SM; Albrecht S; Wittekindt OH; Dietl P; Mizaikoff B; Kranz C
    Anal Bioanal Chem; 2011 Mar; 399(7):2369-78. PubMed ID: 21116619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlative nanoscopy: A multimodal approach to molecular resolution.
    Jadavi S; Bianchini P; Cavalleri O; Dante S; Canale C; Diaspro A
    Microsc Res Tech; 2021 Oct; 84(10):2472-2482. PubMed ID: 33955625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging.
    Frankel DJ; Pfeiffer JR; Surviladze Z; Johnson AE; Oliver JM; Wilson BS; Burns AR
    Biophys J; 2006 Apr; 90(7):2404-13. PubMed ID: 16415053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.
    Suzuki Y; Sakai N; Yoshida A; Uekusa Y; Yagi A; Imaoka Y; Ito S; Karaki K; Takeyasu K
    Sci Rep; 2013; 3():2131. PubMed ID: 23823461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.