These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34468145)

  • 1. Entanglement-Assisted Quantum Chiral Spectroscopy.
    Ye C; Sun Y; Zhang X
    J Phys Chem Lett; 2021 Sep; 12(35):8591-8597. PubMed ID: 34468145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entangled Two-Photon Absorption Spectroscopy.
    Schlawin F; Dorfman KE; Mukamel S
    Acc Chem Res; 2018 Sep; 51(9):2207-2214. PubMed ID: 30179458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon spectroscopy of excitons with entangled photons.
    Schlawin F; Mukamel S
    J Chem Phys; 2013 Dec; 139(24):244110. PubMed ID: 24387360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entanglement-Assisted Absorption Spectroscopy.
    Shi H; Zhang Z; Pirandola S; Zhuang Q
    Phys Rev Lett; 2020 Oct; 125(18):180502. PubMed ID: 33196225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing excited-state dynamics with quantum entangled photons: Correspondence to coherent multidimensional spectroscopy.
    Ishizaki A
    J Chem Phys; 2020 Aug; 153(5):051102. PubMed ID: 32770924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental extraction of an entangled photon pair from two identically decohered pairs.
    Yamamoto T; Koashi M; Ozdemir SK; Imoto N
    Nature; 2003 Jan; 421(6921):343-6. PubMed ID: 12540894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale.
    Zhang Z; Peng T; Nie X; Agarwal GS; Scully MO
    Light Sci Appl; 2022 Sep; 11(1):274. PubMed ID: 36104344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photon entanglement signatures in difference-frequency-generation.
    Roslyak O; Mukamel S
    Opt Express; 2009 Jan; 17(2):1093-106. PubMed ID: 19158927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant Goos-Hänchen shift in two different enantiomers' chiral molecules via quantum coherence.
    Nasehi R; Mahmoudi M
    Appl Opt; 2018 Sep; 57(27):7714-7721. PubMed ID: 30462033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantiodiscrimination of chiral molecules via quantum correlation function.
    Zou F; Chen YY; Liu B; Li Y
    Opt Express; 2022 Aug; 30(17):31073-31085. PubMed ID: 36242198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving two-dimensional optical spectroscopy with temporal and spectral resolution using quantum entangled three photons.
    Fujihashi Y; Ishizaki A
    J Chem Phys; 2021 Jul; 155(4):044101. PubMed ID: 34340393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations of Molecular Optical Properties Using Quantum Light and Hong-Ou-Mandel Interferometry.
    Eshun A; Gu B; Varnavski O; Asban S; Dorfman KE; Mukamel S; Goodson T
    J Am Chem Soc; 2021 Jun; 143(24):9070-9081. PubMed ID: 34124903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathway selectivity in time-resolved spectroscopy using two-photon coincidence counting with quantum entangled photons.
    Fujihashi Y; Ishizaki A; Shimizu R
    J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38456524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entangled photon-pair two-dimensional fluorescence spectroscopy (EPP-2DFS).
    Raymer MG; Marcus AH; Widom JR; Vitullo DL
    J Phys Chem B; 2013 Dec; 117(49):15559-75. PubMed ID: 24047447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum imaging of biological organisms through spatial and polarization entanglement.
    Zhang Y; He Z; Tong X; Garrett DC; Cao R; Wang LV
    Sci Adv; 2024 Mar; 10(10):eadk1495. PubMed ID: 38457506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental purification of two-atom entanglement.
    Reichle R; Leibfried D; Knill E; Britton J; Blakestad RB; Jost JD; Langer C; Ozeri R; Seidelin S; Wineland DJ
    Nature; 2006 Oct; 443(7113):838-41. PubMed ID: 17051214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying enantiomers in mixtures of chiral molecules with broadband microwave spectroscopy.
    Shubert VA; Schmitz D; Patterson D; Doyle JM; Schnell M
    Angew Chem Int Ed Engl; 2014 Jan; 53(4):1152-5. PubMed ID: 24311230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Photon Fluorescence Microscopy at Extremely Low Excitation Intensity: The Power of Quantum Correlations.
    Varnavski O; Goodson T
    J Am Chem Soc; 2020 Jul; 142(30):12966-12975. PubMed ID: 32644814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonreciprocal Optomechanical Entanglement against Backscattering Losses.
    Jiao YF; Zhang SD; Zhang YL; Miranowicz A; Kuang LM; Jing H
    Phys Rev Lett; 2020 Oct; 125(14):143605. PubMed ID: 33064545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circuit QED bright source for chiral entangled light based on dissipation.
    Quijandría F; Porras D; García-Ripoll JJ; Zueco D
    Phys Rev Lett; 2013 Aug; 111(7):073602. PubMed ID: 23992064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.