BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 34468989)

  • 21. Identification of novel biomarkers correlated with prostate cancer progression by an integrated bioinformatic analysis.
    Ma Z; Wang J; Ding L; Chen Y
    Medicine (Baltimore); 2020 Jul; 99(28):e21158. PubMed ID: 32664150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening and identification of key biomarkers in prostate cancer using bioinformatics.
    Li S; Hou J; Xu W
    Mol Med Rep; 2020 Jan; 21(1):311-319. PubMed ID: 31746380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and validation of hub genes for lymph node metastasis in patients with prostate cancer.
    Xu N; Chen SH; Lin TT; Cai H; Ke ZB; Dong RN; Huang P; Li XD; Chen YH; Zheng QS
    J Cell Mol Med; 2020 Apr; 24(8):4402-4414. PubMed ID: 32130760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploration of the diagnostic value and molecular mechanism of miR‑1 in prostate cancer: A study based on meta‑analyses and bioinformatics.
    Xie ZC; Huang JC; Zhang LJ; Gan BL; Wen DY; Chen G; Li SH; Yan HB
    Mol Med Rep; 2018 Dec; 18(6):5630-5646. PubMed ID: 30365107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of aberrantly methylated differentially expressed genes in breast cancer by integrated bioinformatics analysis.
    Yi L; Luo P; Zhang J
    J Cell Biochem; 2019 Sep; 120(9):16229-16243. PubMed ID: 31081184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of castration-resistant prostate cancer-related hub genes using weighted gene co-expression network analysis.
    Cheng Y; Li L; Qin Z; Li X; Qi F
    J Cell Mol Med; 2020 Jul; 24(14):8006-8017. PubMed ID: 32485038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Potential miRNAs Biomarkers for High-Grade Prostate Cancer by Integrated Bioinformatics Analysis.
    Foj L; Filella X
    Pathol Oncol Res; 2019 Oct; 25(4):1445-1456. PubMed ID: 30367364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Downregulation of miR‑224‑5p in prostate cancer and its relevant molecular mechanism via TCGA, GEO database and in silico analyses.
    Gan BL; Zhang LJ; Gao L; Ma FC; He RQ; Chen G; Ma J; Zhong JC; Hu XH
    Oncol Rep; 2018 Dec; 40(6):3171-3188. PubMed ID: 30542718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of key microRNAs and hub genes in non-small-cell lung cancer using integrative bioinformatics and functional analyses.
    Song F; Xuan Z; Yang X; Ye X; Pan Z; Fang Q
    J Cell Biochem; 2020 Mar; 121(3):2690-2703. PubMed ID: 31692035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of hub genes to regulate breast cancer metastasis to brain by bioinformatics analyses.
    Tang D; Zhao X; Zhang L; Wang Z; Wang C
    J Cell Biochem; 2019 Jun; 120(6):9522-9531. PubMed ID: 30506958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of breast cancer hub genes and analysis of prognostic values using integrated bioinformatics analysis.
    Fang E; Zhang X
    Cancer Biomark; 2017 Dec; 21(1):373-381. PubMed ID: 29081411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of novel genes associated with a poor prognosis in pancreatic ductal adenocarcinoma via a bioinformatics analysis.
    Zhou J; Hui X; Mao Y; Fan L
    Biosci Rep; 2019 Aug; 39(8):. PubMed ID: 31311829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of latent biomarkers in connection with progression and prognosis in oral cancer by comprehensive bioinformatics analysis.
    Reyimu A; Chen Y; Song X; Zhou W; Dai J; Jiang F
    World J Surg Oncol; 2021 Aug; 19(1):240. PubMed ID: 34384424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
    Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K
    Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational identification of surrogate genes for prostate cancer phases using machine learning and molecular network analysis.
    Li R; Dong X; Ma C; Liu L
    Theor Biol Med Model; 2014 Aug; 11():37. PubMed ID: 25151146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of crucial aberrantly methylated and differentially expressed genes related to cervical cancer using an integrated bioinformatics analysis.
    Ma X; Liu J; Wang H; Jiang Y; Wan Y; Xia Y; Cheng W
    Biosci Rep; 2020 May; 40(5):. PubMed ID: 32368784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variant analysis of prostate cancer in Japanese patients and a new attempt to predict related biological pathways.
    Kasajima R; Yamaguchi R; Shimizu E; Tamada Y; Niida A; Tremmel G; Kishida T; Aoki I; Imoto S; Miyano S; Uemura H; Miyagi Y
    Oncol Rep; 2020 Mar; 43(3):943-952. PubMed ID: 32020225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct transcriptional repertoire of the androgen receptor in ETS fusion-negative prostate cancer.
    Berglund AE; Rounbehler RJ; Gerke T; Awasthi S; Cheng CH; Takhar M; Davicioni E; Alshalalfa M; Erho N; Klein EA; Freedland SJ; Ross AE; Schaeffer EM; Trock BJ; Den RB; Cleveland JL; Park JY; Dhillon J; Yamoah K
    Prostate Cancer Prostatic Dis; 2019 May; 22(2):292-302. PubMed ID: 30367117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of key regulators in prostate cancer from gene expression datasets of patients.
    Mangangcha IR; Malik MZ; Küçük Ö; Ali S; Singh RKB
    Sci Rep; 2019 Nov; 9(1):16420. PubMed ID: 31712650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis.
    Li T; Gao X; Han L; Yu J; Li H
    World J Surg Oncol; 2018 Jun; 16(1):114. PubMed ID: 29921304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.