These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 34469014)
1. Design and testing of selective inactivators against an antifungal enzyme target. Friday SN; Cheng DW; Zagler SG; Zanella BS; Dietz JD; Calbat CN; Roach LT; Bagnal C; Faile IS; Halkides CJ; Viola RE Drug Dev Res; 2022 Apr; 83(2):447-460. PubMed ID: 34469014 [TBL] [Abstract][Full Text] [Related]
2. A Fragment Library Screening Approach to Identify Selective Inhibitors against an Essential Fungal Enzyme. Dahal GP; Viola RE SLAS Discov; 2018 Jul; 23(6):520-531. PubMed ID: 29608391 [TBL] [Abstract][Full Text] [Related]
3. Aspartate semialdehyde dehydrogenase inhibition suppresses the growth of the pathogenic fungus Candida albicans. Dahal GP; Launder D; McKeone KMM; Hunter JP; Conti HR; Viola RE Drug Dev Res; 2020 Sep; 81(6):736-744. PubMed ID: 32383780 [TBL] [Abstract][Full Text] [Related]
4. Identification of selective enzyme inhibitors by fragment library screening. Gao G; Liu X; Pavlovsky A; Viola RE J Biomol Screen; 2010 Oct; 15(9):1042-50. PubMed ID: 20855558 [TBL] [Abstract][Full Text] [Related]
5. Structural-functional analysis of drug target aspartate semialdehyde dehydrogenase. Kumar R; R R; Diwakar V; Khan N; Kumar Meghwanshi G; Garg P Drug Discov Today; 2024 Mar; 29(3):103908. PubMed ID: 38301800 [TBL] [Abstract][Full Text] [Related]
6. Molecular docking and enzymatic evaluation to identify selective inhibitors of aspartate semialdehyde dehydrogenase. Luniwal A; Wang L; Pavlovsky A; Erhardt PW; Viola RE Bioorg Med Chem; 2012 May; 20(9):2950-6. PubMed ID: 22464683 [TBL] [Abstract][Full Text] [Related]
7. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors. Thangavelu B; Bhansali P; Viola RE Bioorg Med Chem; 2015 Oct; 23(20):6622-31. PubMed ID: 26404410 [TBL] [Abstract][Full Text] [Related]
8. Structural insights into inhibitor binding to a fungal ortholog of aspartate semialdehyde dehydrogenase. Dahal GP; Viola RE Biochem Biophys Res Commun; 2018 Sep; 503(4):2848-2854. PubMed ID: 30107909 [TBL] [Abstract][Full Text] [Related]
9. Expansion of the aspartate beta-semialdehyde dehydrogenase family: the first structure of a fungal ortholog. Arachea BT; Liu X; Pavlovsky AG; Viola RE Acta Crystallogr D Biol Crystallogr; 2010 Feb; 66(Pt 2):205-12. PubMed ID: 20124701 [TBL] [Abstract][Full Text] [Related]
10. Design and synthesis of novel imidazole-substituted dipeptide amides as potent and selective inhibitors of Candida albicans myristoylCoA:protein N-myristoyltransferase and identification of related tripeptide inhibitors with mechanism-based antifungal activity. Devadas B; Freeman SK; Zupec ME; Lu HF; Nagarajan SR; Kishore NS; Lodge JK; Kuneman DW; McWherter CA; Vinjamoori DV; Getman DP; Gordon JI; Sikorski JA J Med Chem; 1997 Aug; 40(16):2609-25. PubMed ID: 9258368 [TBL] [Abstract][Full Text] [Related]
12. Folate-synthesizing enzyme system as target for development of inhibitors and inhibitor combinations against Candida albicans-synthesis and biological activity of new 2,4-diaminopyrimidines and 4'-substituted 4-aminodiphenyl sulfones. Otzen T; Wempe EG; Kunz B; Bartels R; Lehwark-Yvetot G; Hänsel W; Schaper KJ; Seydel JK J Med Chem; 2004 Jan; 47(1):240-53. PubMed ID: 14695838 [TBL] [Abstract][Full Text] [Related]
13. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis. Ishida K; Fernandes Rodrigues JC; Cammerer S; Urbina JA; Gilbert I; de Souza W; Rozental S Ann Clin Microbiol Antimicrob; 2011 Jan; 10():3. PubMed ID: 21255433 [TBL] [Abstract][Full Text] [Related]
14. Structure-Based Rational Design of Novel Inhibitors Against Fructose-1,6-Bisphosphate Aldolase from Candida albicans. Han X; Zhu X; Hong Z; Wei L; Ren Y; Wan F; Zhu S; Peng H; Guo L; Rao L; Feng L; Wan J J Chem Inf Model; 2017 Jun; 57(6):1426-1438. PubMed ID: 28475320 [TBL] [Abstract][Full Text] [Related]
15. Insights into the selective inhibition of Candida albicans secreted aspartyl protease: a docking analysis study. Pranav Kumar SK; Kulkarni VM Bioorg Med Chem; 2002 Apr; 10(4):1153-70. PubMed ID: 11836127 [TBL] [Abstract][Full Text] [Related]
16. New and Promising Chemotherapeutics for Emerging Infections Involving Drug-resistant Non-albicans Candida Species. Silva LN; de Mello TP; de Souza Ramos L; Branquinha MH; Dos Santos ALS Curr Top Med Chem; 2019; 19(28):2527-2553. PubMed ID: 31654512 [TBL] [Abstract][Full Text] [Related]
17. Pyridylethanol(phenylethyl)amines are non-azole, highly selective Candida albicans sterol 14α-demethylase inhibitors. Ogris I; Zelenko U; Sosič I; Gobec M; Skubic C; Ivanov M; Soković M; Kocjan D; Rozman D; Golič Grdadolnik S Bioorg Chem; 2021 Jan; 106():104472. PubMed ID: 33261849 [TBL] [Abstract][Full Text] [Related]
18. Structural Insights into the Tetrameric State of Aspartate-β-semialdehyde Dehydrogenases from Fungal Species. Li Q; Mu Z; Zhao R; Dahal G; Viola RE; Liu T; Jin Q; Cui S Sci Rep; 2016 Feb; 6():21067. PubMed ID: 26869335 [TBL] [Abstract][Full Text] [Related]
19. The discovery of potential phosphopantetheinyl transferase Ppt2 inhibitors against drug-resistant Candida albicans. Meng LN; Liu JY; Wang YT; Ni SS; Xiang MJ Braz J Microbiol; 2020 Dec; 51(4):1665-1672. PubMed ID: 32557281 [TBL] [Abstract][Full Text] [Related]
20. A cautionary tale of structure-guided inhibitor development against an essential enzyme in the aspartate-biosynthetic pathway. Pavlovsky AG; Thangavelu B; Bhansali P; Viola RE Acta Crystallogr D Biol Crystallogr; 2014 Dec; 70(Pt 12):3244-52. PubMed ID: 25478842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]