These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34469046)

  • 41. Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application.
    Youn YH; Lee SJ; Choi GR; Lee HR; Lee D; Heo DN; Kim BS; Bang JB; Hwang YS; Correlo VM; Reis RL; Im SG; Kwon IK
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():949-958. PubMed ID: 30948131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells.
    Lee JH; Shin YC; Jin OS; Kang SH; Hwang YS; Park JC; Hong SW; Han DW
    Nanoscale; 2015 Jul; 7(27):11642-51. PubMed ID: 26098486
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stimulated Osteogenic Differentiation of Human Mesenchymal Stem Cells by Reduced Graphene Oxide.
    Jin L; Lee JH; Jin OS; Shin YC; Kim MJ; Hong SW; Lee MH; Park JC; Han DW
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7966-70. PubMed ID: 26726448
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Graphene-modified CePO4 nanorods effectively treat breast cancer-induced bone metastases and regulate macrophage polarization to improve osteo-inductive ability.
    Ge YW; Liu XL; Yu DG; Zhu ZA; Ke QF; Mao YQ; Guo YP; Zhang JW
    J Nanobiotechnology; 2021 Jan; 19(1):11. PubMed ID: 33413447
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Performance of the Polydopamine-Graphene Oxide Composite Substrate in the Osteogenic Differentiation of Mouse Embryonic Stem Cells.
    Shim NY; Heo JS
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of osteogenic cells grown over modified graphene-oxide-biostable polymers.
    Mirza EH; Khan AA; Al-Khureif AA; Saadaldin SA; Mohamed BA; Fareedi F; Khan MM; Alfayez M; Al-Fotawi R; Vallittu PK; Mahmood A
    Biomed Mater; 2019 Sep; 14(6):065004. PubMed ID: 31408852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Research progress in graphene derivatives promoting bone regeneration].
    Liu CY; Fu L; Wang HC; Wang N; Zhang YD; Zhou YM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2019 Sep; 54(9):642-645. PubMed ID: 31550790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling.
    Xia Y; Guo Y; Yang Z; Chen H; Ren K; Weir MD; Chow LC; Reynolds MA; Zhang F; Gu N; Xu HHK
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109955. PubMed ID: 31500064
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Graphene-Based Antimicrobial Biomedical Surfaces.
    Pandit S; Gaska K; Kádár R; Mijakovic I
    Chemphyschem; 2021 Feb; 22(3):250-263. PubMed ID: 33244859
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of hydroxyapatite/hydrophilic graphene composites and their modulation to cell behavior toward bone reconstruction engineering.
    Wang P; Yu T; Lv Q; Li S; Ma X; Yang G; Xu D; Liu X; Wang G; Chen Z; Xing SC
    Colloids Surf B Biointerfaces; 2019 Jan; 173():512-520. PubMed ID: 30340179
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two-dimensional graphene oxide-reinforced porous biodegradable polymeric nanocomposites for bone tissue engineering.
    Farshid B; Lalwani G; Mohammadi MS; Sankaran JS; Patel S; Judex S; Simonsen J; Sitharaman B
    J Biomed Mater Res A; 2019 Jun; 107(6):1143-1153. PubMed ID: 30635968
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prospects and challenges of graphene in biomedical applications.
    Bitounis D; Ali-Boucetta H; Hong BH; Min DH; Kostarelos K
    Adv Mater; 2013 Apr; 25(16):2258-68. PubMed ID: 23494834
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphene oxide conjugated with polymers: a study of culture condition to determine whether a bacterial growth stimulant or an antimicrobial agent?
    Wu PC; Chen HH; Chen SY; Wang WL; Yang KL; Huang CH; Kao HF; Chang JC; Hsu CL; Wang JY; Chou TM; Kuo WS
    J Nanobiotechnology; 2018 Jan; 16(1):1. PubMed ID: 29321058
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms.
    Yu D; Wang J; Qian KJ; Yu J; Zhu HY
    J Zhejiang Univ Sci B; 2020 Nov.; 21(11):871-884. PubMed ID: 33150771
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved.
    Xiao D; Zhang J; Zhang C; Barbieri D; Yuan H; Moroni L; Feng G
    Acta Biomater; 2020 Apr; 106():22-33. PubMed ID: 31926336
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering.
    Elkhenany H; Amelse L; Lafont A; Bourdo S; Caldwell M; Neilsen N; Dervishi E; Derek O; Biris AS; Anderson D; Dhar M
    J Appl Toxicol; 2015 Apr; 35(4):367-74. PubMed ID: 25220951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Applications of carbon nanomaterials in bone tissue engineering.
    Venkatesan J; Pallela R; Kim SK
    J Biomed Nanotechnol; 2014 Oct; 10(10):3105-23. PubMed ID: 25992431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.