These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34469292)

  • 1. Adjustable Acoustic Field Controlled by "Ultrasonic Projector" on Ultrasound Application.
    Li Z; Yang S; Fei C; Guo R; Chen D; Zheng C; Yang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):254-260. PubMed ID: 34469292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the transmission of ultrahigh frequency bulk acoustic waves in silicon by 45° mirrors.
    Wang S; Gao J; Carlier J; Campistron P; NDieguene A; Guo S; Matar OB; Dorothee DC; Nongaillard B
    Ultrasonics; 2011 Jul; 51(5):532-8. PubMed ID: 21295322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic field prediction for a single planar continuous-wave source using an equivalent phased array method.
    Fan X; Moros EG; Straube WL
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2734-41. PubMed ID: 9373969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?
    Oralkan O; Ergun AS; Johnson JA; Karaman M; Demirci U; Kaviani K; Lee TH; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1596-610. PubMed ID: 12484483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Customization of the acoustic field produced by a piezoelectric array through interelement delays.
    Chitnis PV; Barbone PE; Cleveland RO
    J Acoust Soc Am; 2008 Jun; 123(6):4174-85. PubMed ID: 18537369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic considerations of acoustic lenses for ultrasonic transducers.
    Ichinose RM; Machado JC
    Med Prog Technol; 1994; 20(1-2):53-8. PubMed ID: 7968866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Numerical Method for the Design of 3-D-Printed Holographic Acoustic Lenses for Aberration Correction of Single-Element Transcranial Focused Ultrasound.
    Ferri M; Bravo JM; Redondo J; Sánchez-Pérez JV
    Ultrasound Med Biol; 2019 Mar; 45(3):867-884. PubMed ID: 30600128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J; Ren X; Zhou Q; Zhou J; Xu Z
    Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and experimental investigation of kerf depth effect on high-frequency phased array transducer.
    Zhang JY; Xu WJ; Carlier J; Ji XM; Queste S; Nongaillard B; Huang YP
    Ultrasonics; 2012 Feb; 52(2):223-9. PubMed ID: 21907378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and acoustic characterization of limited diffraction ultrasonic devices.
    Aulet A; Núñez I; Moreno E; Eiras JA; Negreira CA
    J Acoust Soc Am; 2010 May; 127(5):2737-40. PubMed ID: 21117721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic coupling in capacitive microfabricated ultrasonic transducers: modeling and experiments.
    Caronti A; Savoia A; Caliano G; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2220-34. PubMed ID: 16463488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized Backing Layers Design for High Frequency Broad Bandwidth Ultrasonic Transducer.
    Hou C; Fei C; Li Z; Zhang S; Man J; Chen D; Wu R; Li D; Yang Y; Feng W
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):475-481. PubMed ID: 34288870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steering Capabilities of an Acoustic Lens for Transcranial Therapy: Numerical and Experimental Studies.
    Maimbourg G; Houdouin A; Deffieux T; Tanter M; Aubry JF
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):27-37. PubMed ID: 30932823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-paraxial acoustic field approximation for phased arrays.
    Peng KO; de la Fonteijne MR
    Ultrason Imaging; 1989 Oct; 11(4):260-72. PubMed ID: 2815424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation.
    Samoudi MA; Van Renterghem T; Botteldooren D
    J Neural Eng; 2019 Apr; 16(2):026015. PubMed ID: 30572313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-wave modeling of therapeutic ultrasound: nonlinear ultrasound propagation in ideal fluids.
    Ginter S; Liebler M; Steiger E; Dreyer T; Riedlinger RE
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2049-59. PubMed ID: 12051425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating an Adjustable Focused Field With an Annular Shape Using a Cylindrical Acoustic Transducer Array.
    Yang X; Yin G; Tian Y; Guo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):356-364. PubMed ID: 31562075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass-windowed ultrasound transducers.
    Yddal T; Gilja OH; Cochran S; Postema M; Kotopoulis S
    Ultrasonics; 2016 May; 68():108-19. PubMed ID: 26938326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation and control of sound bullets with a nonlinear acoustic lens.
    Spadoni A; Daraio C
    Proc Natl Acad Sci U S A; 2010 Apr; 107(16):7230-4. PubMed ID: 20368461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.