BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34469432)

  • 1. Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI.
    Gaj S; Ontaneda D; Nakamura K
    PLoS One; 2021; 16(9):e0255939. PubMed ID: 34469432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.
    Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE
    Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks.
    Gros C; De Leener B; Badji A; Maranzano J; Eden D; Dupont SM; Talbott J; Zhuoquiong R; Liu Y; Granberg T; Ouellette R; Tachibana Y; Hori M; Kamiya K; Chougar L; Stawiarz L; Hillert J; Bannier E; Kerbrat A; Edan G; Labauge P; Callot V; Pelletier J; Audoin B; Rasoanandrianina H; Brisset JC; Valsasina P; Rocca MA; Filippi M; Bakshi R; Tauhid S; Prados F; Yiannakas M; Kearney H; Ciccarelli O; Smith S; Treaba CA; Mainero C; Lefeuvre J; Reich DS; Nair G; Auclair V; McLaren DG; Martin AR; Fehlings MG; Vahdat S; Khatibi A; Doyon J; Shepherd T; Charlson E; Narayanan S; Cohen-Adad J
    Neuroimage; 2019 Jan; 184():901-915. PubMed ID: 30300751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials.
    Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD
    Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning segmentation of gadolinium-enhancing lesions in multiple sclerosis.
    Coronado I; Gabr RE; Narayana PA
    Mult Scler; 2021 Apr; 27(4):519-527. PubMed ID: 32442043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation?
    Egger C; Opfer R; Wang C; Kepp T; Sormani MP; Spies L; Barnett M; Schippling S
    Neuroimage Clin; 2017; 13():264-270. PubMed ID: 28018853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images.
    Sarica B; Seker DZ; Bayram B
    Int J Med Inform; 2023 Feb; 170():104965. PubMed ID: 36580821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated volumetric assessment with artificial neural networks might enable a more accurate assessment of disease burden in patients with multiple sclerosis.
    Brugnara G; Isensee F; Neuberger U; Bonekamp D; Petersen J; Diem R; Wildemann B; Heiland S; Wick W; Bendszus M; Maier-Hein K; Kickingereder P
    Eur Radiol; 2020 Apr; 30(4):2356-2364. PubMed ID: 31900702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
    Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered signal intensity of active enhancing inflammatory lesions using post-contrast double inversion recovery MR sequence.
    Hodel J; Badr S; Outteryck O; Lebert P; Chechin D; Benadjaoud MA; Pruvo JP; Vermersch P; Leclerc X
    Eur Radiol; 2017 Feb; 27(2):637-641. PubMed ID: 27229340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can Deep Learning Replace Gadolinium in Neuro-Oncology?: A Reader Study.
    Ammari S; Bône A; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Menu Y; Bidault F; Nicolas F; Robert P; Rohé MM; Lassau N
    Invest Radiol; 2022 Feb; 57(2):99-107. PubMed ID: 34324463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.
    Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ
    Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI.
    Aymerich FX; Auger C; Alcaide-Leon P; Pareto D; Huerga E; Corral JF; Mitjana R; Sastre-Garriga J; Montalban X; Rovira A
    Eur Radiol; 2017 Apr; 27(4):1361-1368. PubMed ID: 27456965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
    Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ
    Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
    Maranzano J; Dadar M; Zhernovaia M; Arnold DL; Collins DL; Narayanan S
    Neuroimage; 2020 Jun; 213():116690. PubMed ID: 32119987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual modeling approach to automatic segmentation of cerebral T2 hyperintensities and T1 black holes in multiple sclerosis.
    Valcarcel AM; Linn KA; Khalid F; Vandekar SN; Tauhid S; Satterthwaite TD; Muschelli J; Martin ML; Bakshi R; Shinohara RT
    Neuroimage Clin; 2018; 20():1211-1221. PubMed ID: 30391859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine.
    Perkuhn M; Stavrinou P; Thiele F; Shakirin G; Mohan M; Garmpis D; Kabbasch C; Borggrefe J
    Invest Radiol; 2018 Nov; 53(11):647-654. PubMed ID: 29863600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging.
    Schmidt P; Pongratz V; Küster P; Meier D; Wuerfel J; Lukas C; Bellenberg B; Zipp F; Groppa S; Sämann PG; Weber F; Gaser C; Franke T; Bussas M; Kirschke J; Zimmer C; Hemmer B; Mühlau M
    Neuroimage Clin; 2019; 23():101849. PubMed ID: 31085465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.