These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3446957)

  • 1. A purine-pyrimidine motif verifying an identical presence in almost all gene taxonomic groups.
    Arquès DG; Michel CJ
    J Theor Biol; 1987 Oct; 128(4):457-61. PubMed ID: 3446957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical expression of the purine/pyrimidine autocorrelation function after and before random mutations.
    Arques DG; Michel CJ
    Math Biosci; 1994 Sep; 123(1):103-25. PubMed ID: 7949744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of DNA sequence evolution.
    Arquès DG; Michel CJ
    Bull Math Biol; 1990; 52(6):741-72. PubMed ID: 2279193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and simulation of new non-random statistical properties common to different eukaryotic gene subpopulations.
    Arquès DG; Michel CJ
    Biochimie; 1993; 75(5):399-407. PubMed ID: 8347726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical expression of the purine/pyrimidine codon probability after and before random mutations.
    Arquès DG; Michel CJ
    Bull Math Biol; 1993 Nov; 55(6):1025-38. PubMed ID: 8281128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and simulation of new non-random statistical properties common to different populations of eukaryotic non-coding genes.
    Arquès DG; Michel CJ; Orieux K
    J Theor Biol; 1993 Apr; 161(3):329-42. PubMed ID: 8331957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and simulation of shifted periodicities common to protein coding genes of eukaryotes, prokaryotes and viruses.
    Arquès DG; Lapayre JC; Michel CJ
    J Theor Biol; 1995 Feb; 172(3):279-91. PubMed ID: 7715198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simulation of the genetic periodicities modulo 2 and 3 with processes of nucleotide insertions and deletions.
    Arquès DG; Michel CJ
    J Theor Biol; 1992 May; 156(1):113-27. PubMed ID: 1379311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method to determine the reading frame of a protein from the purine/pyrimidine genome sequence and its possible evolutionary justification.
    Shepherd JC
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1596-600. PubMed ID: 6940175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodicities in coding and noncoding regions of the genes.
    Arquès DG; Michel CJ
    J Theor Biol; 1990 Apr; 143(3):307-18. PubMed ID: 2385108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of the purine-pyrimidine motif present in most gene groups.
    Cornish-Bowden A
    J Theor Biol; 1988 Sep; 134(1):1-7. PubMed ID: 3249534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Looking for organization patterns of highly expressed genes: purine-pyrimidine composition of precursor mRNAs.
    Paz A; Mester D; Nevo E; Korol A
    J Mol Evol; 2007 Feb; 64(2):248-60. PubMed ID: 17211550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A complementary circular code in the protein coding genes.
    Arquès DG; Michel CJ
    J Theor Biol; 1996 Sep; 182(1):45-58. PubMed ID: 8917736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bias of purine stretches in sequenced chromosomes.
    Ussery D; Soumpasis DM; Brunak S; Staerfeldt HH; Worning P; Krogh A
    Comput Chem; 2002 Jul; 26(5):531-41. PubMed ID: 12144181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the purine/pyrimidine codon occurrence with a reduced centered variable and an evaluation compared to the frequency statistic.
    Michel CJ
    Math Biosci; 1989 Dec; 97(2):161-77. PubMed ID: 2520209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An oligopurine sequence bias occurs in eukaryotic viruses.
    Beasty AM; Behe MJ
    Nucleic Acids Res; 1988 Feb; 16(4):1517-28. PubMed ID: 3347495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence from CD spectra that d(purine).r(pyrimidine) and r(purine).d(pyrimidine) hybrids are in different structural classes.
    Hung SH; Yu Q; Gray DM; Ratliff RL
    Nucleic Acids Res; 1994 Oct; 22(20):4326-34. PubMed ID: 7937162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial-encoded membrane protein transcripts are pyrimidine-rich while soluble protein transcripts and ribosomal RNA are purine-rich.
    Bradshaw PC; Rathi A; Samuels DC
    BMC Genomics; 2005 Sep; 6():136. PubMed ID: 16185363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical solutions of the dinucleotide probability after and before random mutations.
    Arquès DG; Michel CJ
    J Theor Biol; 1995 Aug; 175(4):533-44. PubMed ID: 7475089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The DNA sequence of the human beta-globin region is strongly biased in favor of long strings of contiguous purine or pyrimidine residues.
    Behe MJ
    Biochemistry; 1987 Dec; 26(24):7870-5. PubMed ID: 3427110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.