These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 34469846)
1. Evaluation of autophagy mediators in myeloid-derived suppressor cells during human tuberculosis. Kotze LA; Leukes VN; Fang Z; Lutz MB; Fitzgerald BL; Belisle J; Loxton AG; Walzl G; du Plessis N Cell Immunol; 2021 Nov; 369():104426. PubMed ID: 34469846 [TBL] [Abstract][Full Text] [Related]
2. The mTOR Deficiency in Monocytic Myeloid-Derived Suppressor Cells Protects Mouse Cardiac Allografts by Inducing Allograft Tolerance. Li J; Chen J; Zhang M; Zhang C; Wu R; Yang T; Qiu Y; Liu J; Zhu T; Zhang Y; Rong R Front Immunol; 2021; 12():661338. PubMed ID: 33897705 [TBL] [Abstract][Full Text] [Related]
3. Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with Mycobacterium tuberculosis. Du Plessis N; Jacobs R; Gutschmidt A; Fang Z; van Helden PD; Lutz MB; Hesseling AC; Walzl G Eur J Immunol; 2017 Jan; 47(1):107-118. PubMed ID: 27861788 [TBL] [Abstract][Full Text] [Related]
4. The Emerging Role of Myeloid-Derived Suppressor Cells in Tuberculosis. Magcwebeba T; Dorhoi A; du Plessis N Front Immunol; 2019; 10():917. PubMed ID: 31114578 [TBL] [Abstract][Full Text] [Related]
5. PMN-MDSC Frequency Discriminates Active Versus Latent Tuberculosis and Could Play a Role in Counteracting the Immune-Mediated Lung Damage in Active Disease. Grassi G; Vanini V; De Santis F; Romagnoli A; Aiello A; Casetti R; Cimini E; Bordoni V; Notari S; Cuzzi G; Mosti S; Gualano G; Palmieri F; Fraziano M; Goletti D; Agrati C; Sacchi A Front Immunol; 2021; 12():594376. PubMed ID: 33981297 [TBL] [Abstract][Full Text] [Related]
6. Myeloid-Derived Suppressor Cells as Target of Phosphodiesterase-5 Inhibitors in Host-Directed Therapeutics for Tuberculosis. Leukes V; Walzl G; du Plessis N Front Immunol; 2020; 11():451. PubMed ID: 32269568 [TBL] [Abstract][Full Text] [Related]
7. Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts. Kotzé LA; Young C; Leukes VN; John V; Fang Z; Walzl G; Lutz MB; du Plessis N EBioMedicine; 2020 Mar; 53():102670. PubMed ID: 32113158 [TBL] [Abstract][Full Text] [Related]
8. High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy. Parker KH; Horn LA; Ostrand-Rosenberg S J Leukoc Biol; 2016 Sep; 100(3):463-70. PubMed ID: 26864266 [TBL] [Abstract][Full Text] [Related]
9. Monocytic-Myeloid Derived Suppressor Cells of HIV-Infected Individuals With Viral Suppression Exhibit Suppressed Innate Immunity to Namdev P; Patel S; Sparling B; Garg A Front Immunol; 2021; 12():647019. PubMed ID: 33995365 [TBL] [Abstract][Full Text] [Related]
11. Survival of the fittest: how myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Ostrand-Rosenberg S; Beury DW; Parker KH; Horn LA Cancer Immunol Immunother; 2020 Feb; 69(2):215-221. PubMed ID: 31501954 [TBL] [Abstract][Full Text] [Related]
12. Monocytic myeloid-derived suppressor cells reflect tuberculosis severity and are influenced by cyclooxygenase-2 inhibitors. Jøntvedt Jørgensen M; Jenum S; Tonby K; Mortensen R; Walzl G; Du Plessis N; Dyrhol-Riise AM J Leukoc Biol; 2021 Jul; 110(1):177-186. PubMed ID: 33155730 [TBL] [Abstract][Full Text] [Related]
13. Translational Potential of Therapeutics Targeting Regulatory Myeloid Cells in Tuberculosis. du Plessis N; Kotze LA; Leukes V; Walzl G Front Cell Infect Microbiol; 2018; 8():332. PubMed ID: 30298121 [TBL] [Abstract][Full Text] [Related]
14. The mTOR signal regulates myeloid-derived suppressor cells differentiation and immunosuppressive function in acute kidney injury. Zhang C; Wang S; Li J; Zhang W; Zheng L; Yang C; Zhu T; Rong R Cell Death Dis; 2017 Mar; 8(3):e2695. PubMed ID: 28333137 [TBL] [Abstract][Full Text] [Related]
15. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion. Schiebler M; Brown K; Hegyi K; Newton SM; Renna M; Hepburn L; Klapholz C; Coulter S; Obregón-Henao A; Henao Tamayo M; Basaraba R; Kampmann B; Henry KM; Burgon J; Renshaw SA; Fleming A; Kay RR; Anderson KE; Hawkins PT; Ordway DJ; Rubinsztein DC; Floto RA EMBO Mol Med; 2015 Feb; 7(2):127-39. PubMed ID: 25535254 [TBL] [Abstract][Full Text] [Related]
17. Residual immune activation in HIV-Infected individuals expands monocytic-myeloid derived suppressor cells. Singh R; Chakraborty M; Gautam A; Roy SK; Halder I; Barber J; Garg A Cell Immunol; 2021 Apr; 362():104304. PubMed ID: 33610024 [TBL] [Abstract][Full Text] [Related]
18. Analysis of Antimicrobial Activity of Monocytic Myeloid-Derived Suppressor Cells in Infection with Mycobacterium tuberculosis and Human Immunodeficiency Virus. Garg A Methods Mol Biol; 2021; 2236():115-127. PubMed ID: 33237545 [TBL] [Abstract][Full Text] [Related]
19. Immunometabolism of Myeloid-Derived Suppressor Cells: Implications for Munansangu BSM; Kenyon C; Walzl G; Loxton AG; Kotze LA; du Plessis N Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408873 [TBL] [Abstract][Full Text] [Related]
20. Immunosuppressive effects and mechanisms of three myeloid-derived suppressor cells subsets including monocytic-myeloid-derived suppressor cells, granulocytic-myeloid-derived suppressor cells, and immature-myeloid-derived suppressor cells. Nagatani Y; Funakoshi Y; Suto H; Imamura Y; Toyoda M; Kiyota N; Yamashita K; Minami H J Cancer Res Ther; 2021; 17(4):1093-1100. PubMed ID: 34528569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]