These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34469955)

  • 21. Custom-Made Microspheres for Optical Tweezers.
    Jannasch A; Abdosamadi MK; Ramaiya A; De S; Ferro V; Sonnberger A; Schäffer E
    Methods Mol Biol; 2017; 1486():137-155. PubMed ID: 27844428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer.
    Kotnala A; Gordon R
    Nano Lett; 2014 Feb; 14(2):853-6. PubMed ID: 24404888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Axial Optical Traps: A New Direction for Optical Tweezers.
    Yehoshua S; Pollari R; Milstein JN
    Biophys J; 2015 Jun; 108(12):2759-66. PubMed ID: 26083913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers.
    Xiao G; Kuang T; Luo B; Xiong W; Han X; Chen X; Luo H
    Opt Express; 2019 Dec; 27(25):36653-36661. PubMed ID: 31873439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trapping metallic particles using focused Bloch surface waves.
    Xiang Y; Tang X; Fu Y; Lu F; Kuai Y; Min C; Chen J; Wang P; Lakowicz JR; Yuan X; Zhang D
    Nanoscale; 2020 Jan; 12(3):1688-1696. PubMed ID: 31894803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bessel beam optical tweezers for manipulating superparamagnetic beads.
    Andrade UMS; Garcia AM; Rocha MS
    Appl Opt; 2021 Apr; 60(12):3422-3429. PubMed ID: 33983247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cooke-Triplet tweezers: more compact, robust, and efficient optical tweezers.
    Stangner T; Dahlberg T; Svenmarker P; Zakrisson J; Wiklund K; Oddershede LB; Andersson M
    Opt Lett; 2018 May; 43(9):1990-1993. PubMed ID: 29714728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theory of optical tweezing of dielectric microspheres in chiral host media and its applications.
    Ali R; Dutra RS; Pinheiro FA; Rosa FSS; Maia Neto PA
    Sci Rep; 2020 Oct; 10(1):16481. PubMed ID: 33020577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface optical sensitivity enhanced by a single dielectric microsphere.
    Ruzankina I; Mukhin N; Mermoul A; Parfenov V; Fron E; Ferrini G
    Opt Express; 2022 Nov; 30(24):43021-43036. PubMed ID: 36523010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical trapping of coated microspheres.
    Bormuth V; Jannasch A; Ander M; van Kats CM; van Blaaderen A; Howard J; Schäffer E
    Opt Express; 2008 Sep; 16(18):13831-44. PubMed ID: 18772994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-Chip Optical Trapping with High NA Metasurfaces.
    Xiao J; Plaskocinski T; Biabanifard M; Persheyev S; Di Falco A
    ACS Photonics; 2023 May; 10(5):1341-1348. PubMed ID: 37215320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor.
    López-Quesada C; Andilla J; Martín-Badosa E
    Appl Opt; 2009 Feb; 48(6):1084-90. PubMed ID: 23567567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams.
    Kozawa Y; Sato S
    Opt Express; 2010 May; 18(10):10828-33. PubMed ID: 20588937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exact Theory of Optical Tweezers and Its Application to Absolute Calibration.
    Dutra RS; Viana NB; Neto PAM; Nussenzveig HM
    Methods Mol Biol; 2017; 1486():25-39. PubMed ID: 27844424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size selective trapping with optical "cogwheel" tweezers.
    Jesacher A; Fürhapter S; Bernet S; Ritsch-Marte M
    Opt Express; 2004 Aug; 12(17):4129-35. PubMed ID: 19483955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trapping force and optical lifting under focused evanescent wave illumination.
    Ganic D; Gan X; Gu M
    Opt Express; 2004 Nov; 12(22):5533-8. PubMed ID: 19484115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Luminescent nanoparticle trapping with far-field optical fiber-tip tweezers.
    Decombe JB; Valdivia-Valero FJ; Dantelle G; Leménager G; Gacoin T; Colas des Francs G; Huant S; Fick J
    Nanoscale; 2016 Mar; 8(9):5334-42. PubMed ID: 26883602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of trapping efficiency by utilizing a hollow sinh-Gaussian beam.
    Liu Z; Wang X; Hang K
    Sci Rep; 2019 Jul; 9(1):10187. PubMed ID: 31308461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.