These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34469968)

  • 1. Compact tomographic near-eye display using a MEMS scanning mirror.
    Kim M; Lee S; Jo Y; Lee S; Lee B
    Opt Lett; 2021 Sep; 46(17):4176-4179. PubMed ID: 34469968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact Lens-less Digital Holographic Microscope for MEMS Inspection and Characterization.
    Bourgade T; Jianfei S; Wang Z; Elsa R; Asundi A
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27404277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waveguide-type Maxwellian near-eye display using a pin-mirror holographic optical element array.
    Choi MH; Shin KS; Jang J; Han W; Park JH
    Opt Lett; 2022 Jan; 47(2):405-408. PubMed ID: 35030617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror.
    Wang D; Fu L; Wang X; Gong Z; Samuelson S; Duan C; Jia H; Ma JS; Xie H
    J Biomed Opt; 2013 Aug; 18(8):86005. PubMed ID: 23942630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias.
    Liu L; Wu L; Sun J; Lin E; Xie H
    J Biomed Opt; 2011 Feb; 16(2):026006. PubMed ID: 21361690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin autofocus camera module by a large-stroke micromachined deformable mirror.
    Hsieh HT; Wei HC; Lin MH; Hsu WY; Cheng YC; Su GD
    Opt Express; 2010 May; 18(11):11097-104. PubMed ID: 20588967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner.
    Shu T; Hu G; Wu R; Li H; Zhang Z; Liu X
    Opt Express; 2022 Aug; 30(18):31714-31727. PubMed ID: 36242248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.
    Strathman M; Liu Y; Li X; Lin LY
    Opt Express; 2013 Oct; 21(20):23934-41. PubMed ID: 24104304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of solid-state lasers using an intra-cavity MEMS micromirror.
    Lubeigt W; Gomes J; Brown G; Kelly A; Savitski V; Uttamchandani D; Burns D
    Opt Express; 2011 Jan; 19(3):2456-65. PubMed ID: 21369065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis on image quality of a holographic lens with a non-converging signal wave for compact near-eye displays.
    Yeom J; Jeong J; Hong J; Choi KS
    Opt Express; 2022 Sep; 30(20):36632-36643. PubMed ID: 36258587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a dual focal-plane near-eye display using diffractive waveguides and multiple lenses.
    Shi X; Xue Z; Ma S; Wang B; Liu Y; Wang Y; Song W
    Appl Opt; 2022 Jul; 61(20):5844-5849. PubMed ID: 36255821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-color retinal-projection near-eye display using a multiplexing-encoding holographic method.
    Song W; Li X; Zheng Y; Liu Y; Wang Y
    Opt Express; 2021 Mar; 29(6):8098-8107. PubMed ID: 33820262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact near-eye display system using a superlens-based microlens array magnifier.
    Park HS; Hoskinson R; Abdollahi H; Stoeber B
    Opt Express; 2015 Nov; 23(24):30618-33. PubMed ID: 26698694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking.
    Yang VX; Mao Y; Standish BA; Munce NR; Chiu S; Burnes D; Wilson BC; Vitkin IA; Himmer PA; Dickensheets DL
    Opt Lett; 2006 May; 31(9):1262-4. PubMed ID: 16642079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror.
    Piyawattanametha W; Cocker ED; Burns LD; Barretto RP; Jung JC; Ra H; Solgaard O; Schnitzer MJ
    Opt Lett; 2009 Aug; 34(15):2309-11. PubMed ID: 19649080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-axis polydimethylsiloxane-based electromagnetic microelectromechanical system scanning mirror for optical coherence tomography.
    Kim S; Lee C; Kim JY; Kim J; Lim G; Kim C
    J Biomed Opt; 2016 Oct; 21(10):106001. PubMed ID: 27731491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distortion corrected tomographic near-eye displays using light field optimization.
    Lee S; Lee S; Kim D; Lee B
    Opt Express; 2021 Aug; 29(17):27573-27586. PubMed ID: 34615171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 23 kHz MEMS based swept source for optical coherence tomography imaging.
    Vuong B; Sun C; Harduar MK; Mariampillai A; Isamoto K; Chong C; Standish BA; Yang VX
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6134-7. PubMed ID: 22255739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Design and implementation of a long wavelength near infrared spectrometer based on MEMS scanning mirror].
    Ye KT; Dong TY; He WX; Li YX; Cheng XM; Li GY; Li HY; Xu HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2858-62. PubMed ID: 25739238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support.
    Xia X; Guan Y; State A; Chakravarthula P; Rathinavel K; Cham TJ; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3114-3124. PubMed ID: 31403422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.