These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34469973)

  • 1. Application of the Gaussian modeling algorithm to a Shack-Hartmann wavefront sensor for daylight adaptive optics.
    Xu L; Wang J; Yao K; Yang L
    Opt Lett; 2021 Sep; 46(17):4196-4199. PubMed ID: 34469973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible pyramid wavefront sensing approach for daylight adaptive optics.
    Huang L; Wang J; Chen L; Yuan H; Li H; Yao K
    Opt Express; 2022 Mar; 30(7):10833-10849. PubMed ID: 35473041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor.
    Yin X; Li X; Zhao L; Fang Z
    Appl Opt; 2009 Nov; 48(32):6088-98. PubMed ID: 19904304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High precision wavefront correction using an influence function optimization method based on a hybrid adaptive optics system.
    Zheng Y; Sun C; Dai W; Zeng F; Xue Q; Wang D; Zhao W; Huang L
    Opt Express; 2019 Nov; 27(24):34937-34951. PubMed ID: 31878672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shack-Hartmann wavefront sensing with elongated sodium laser beacons: centroiding versus matched filtering.
    Gilles L; Ellerbroek B
    Appl Opt; 2006 Sep; 45(25):6568-76. PubMed ID: 16912797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental results of ground-layer and tomographic wavefront reconstruction from multiple laser guide stars.
    Lloyd-Hart M; Baranec C; Milton NM; Snyder M; Stalcup T; Angel JR
    Opt Express; 2006 Aug; 14(17):7541-51. PubMed ID: 19529120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise calibration of pupil images in pyramid wavefront sensor.
    Liu Y; Mu Q; Cao Z; Hu L; Yang C; Xuan L
    Appl Opt; 2017 Apr; 56(12):3281-3286. PubMed ID: 28430247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field-of-view shifted Shack-Hartmann wavefront sensor for daytime adaptive optics system.
    Li C; Xian H; Rao C; Jiang W
    Opt Lett; 2006 Oct; 31(19):2821-3. PubMed ID: 16969389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential focal anisoplanatism in laser guide star wavefront sensing on extremely large telescopes.
    Muller N; Michau V; Robert C; Rousset G
    Opt Lett; 2011 Oct; 36(20):4071-3. PubMed ID: 22002389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.
    Gilles L; Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A76-83. PubMed ID: 21045893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-layer Shack-Hartmann wavefront sensing in the point source regime.
    Akondi V; Dubra A
    Biomed Opt Express; 2021 Jan; 12(1):409-432. PubMed ID: 33520390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive optics system for a short wavelength mid-IR laser based on a Shack-Hartmann wavefront sensor and analysis of thermal noise impacts.
    Zhou H; Pilar J; Smrz M; Chen L; Čech M; Mocek T
    Appl Opt; 2022 Sep; 61(27):7958-7965. PubMed ID: 36255916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Stable Spatio-Temporal Prediction Network of Wavefront Sensor Slopes in Adaptive Optics.
    Wang N; Zhu L; Yuan Q; Ge X; Gao Z; Wang S; Yang P
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image registration for daylight adaptive optics.
    Hart M
    Opt Lett; 2018 Mar; 43(6):1391-1394. PubMed ID: 29543243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constrained matched filtering for extended dynamic range and improved noise rejection for Shack-Hartmann wavefront sensing.
    Gilles L; Ellerbroek BL
    Opt Lett; 2008 May; 33(10):1159-61. PubMed ID: 18483545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of the matched-filter algorithm to multiple guide star Shack-Hartmann wavefront sensor.
    Piatrou P
    Appl Opt; 2019 Feb; 58(4):841-849. PubMed ID: 30874128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Sensitive Shack-Hartmann Wavefront Sensor: Application to Non-Transparent Tissue Mimic Imaging with Adaptive Light-Sheet Fluorescence Microscopy.
    Morgado Brajones J; Clouvel G; Dovillaire G; Levecq X; Lorenzo C
    Methods Protoc; 2019 Jul; 2(3):. PubMed ID: 31336779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient implementation of the Shack-Hartmann centroid extraction for edge computing.
    Mocci J; Busato F; Bombieri N; Bonora S; Muradore R
    J Opt Soc Am A Opt Image Sci Vis; 2020 Oct; 37(10):1548-1556. PubMed ID: 33104604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bringing the visible universe into focus with Robo-AO.
    Baranec C; Riddle R; Law NM; Ramaprakash AN; Tendulkar SP; Bui K; Burse MP; Chordia P; Das HK; Davis JT; Dekany RG; Kasliwal MM; Kulkarni SR; Morton TD; Ofek EO; Punnadi S
    J Vis Exp; 2013 Feb; (72):. PubMed ID: 23426078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.