These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34470237)

  • 1. On multistability near the boundary of generalized synchronization in unidirectionally coupled chaotic systems.
    Moskalenko OI; Koronovskii AA; Selskii AO; Evstifeev EV
    Chaos; 2021 Aug; 31(8):083106. PubMed ID: 34470237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent route to generalized synchronization in bidirectionally coupled chaotic oscillators.
    Koronovskii AA; Moskalenko OI; Pivovarov AA; Evstifeev EV
    Chaos; 2020 Aug; 30(8):083133. PubMed ID: 32872830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermittent generalized synchronization and modified system approach: Discrete maps.
    Koronovskii AA; Moskalenko OI; Selskii AO
    Phys Rev E; 2024 Jun; 109(6-1):064217. PubMed ID: 39020896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized synchronization: a modified system approach.
    Hramov AE; Koronovskii AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):067201. PubMed ID: 16089917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jump intermittency as a second type of transition to and from generalized synchronization.
    Koronovskii AA; Moskalenko OI; Pivovarov AA; Khanadeev VA; Hramov AE; Pisarchik AN
    Phys Rev E; 2020 Jul; 102(1-1):012205. PubMed ID: 32794947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analytic criterion for generalized synchronization in unidirectionally coupled systems based on the auxiliary system approach.
    Wong WK; Zhen B; Xu J; Wang Z
    Chaos; 2012 Sep; 22(3):033146. PubMed ID: 23020485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization of coupled bistable chaotic systems: experimental study.
    Pisarchik AN; Jaimes-Reátegui R; García-López JH
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):459-73. PubMed ID: 17681912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator.
    Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J
    Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of multistability in the transition to chaotic phase synchronization.
    Postnov DE; Vadivasova TE; Sosnovtseva OV; Balanov AG; Anishchenko VS; Mosekilde E
    Chaos; 1999 Mar; 9(1):227-232. PubMed ID: 12779818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized synchronization in coupled Ginzburg-Landau equations and mechanisms of its arising.
    Hramov AE; Koronovskii AA; Popov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037201. PubMed ID: 16241618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sign-independent synchronization in unidirectionally coupled chaotic systems.
    Nan M; Tsang Kf KF; Wong CN; Shi X
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5439-44. PubMed ID: 11970416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lag synchronization and scaling of chaotic attractor in coupled system.
    Bhowmick SK; Pal P; Roy PK; Dana SK
    Chaos; 2012 Jun; 22(2):023151. PubMed ID: 22757558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to chaotic synchronization.
    Hramov AE; Koronovskii AA
    Chaos; 2004 Sep; 14(3):603-10. PubMed ID: 15446970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplification through chaotic synchronization in spatially extended beam-plasma systems.
    Moskalenko OI; Frolov NS; Koronovskii AA; Hramov AE
    Chaos; 2017 Dec; 27(12):126701. PubMed ID: 29289059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized synchronization in time-delayed systems.
    Shahverdiev EM; Shore KA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016201. PubMed ID: 15697692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplified response in coupled chaotic oscillators by induced heterogeneity.
    Padmanaban E; Saha S; Vigneshwaran M; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062916. PubMed ID: 26764783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized phase synchronization in unidirectionally coupled chaotic oscillators.
    Lee DS; Kye WH; Rim S; Kwon TY; Kim CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):045201. PubMed ID: 12786423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating and enhancing lag synchronization of chaotic systems by white noise.
    Sun Z; Yang X
    Chaos; 2011 Sep; 21(3):033114. PubMed ID: 21974649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergent hybrid synchronization in coupled chaotic systems.
    Padmanaban E; Boccaletti S; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022920. PubMed ID: 25768582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driving-induced multistability in coupled chaotic oscillators: Symmetries and riddled basins.
    Ujjwal SR; Punetha N; Ramaswamy R; Agrawal M; Prasad A
    Chaos; 2016 Jun; 26(6):063111. PubMed ID: 27368776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.