These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise. Lin L; Duan J; Wang X; Zhang Y Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951 [TBL] [Abstract][Full Text] [Related]
6. Emergent excitability in populations of nonexcitable units. Ciszak M; Marino F; Torcini A; Olmi S Phys Rev E; 2020 Nov; 102(5-1):050201. PubMed ID: 33327208 [TBL] [Abstract][Full Text] [Related]
7. Two scenarios for the onset and suppression of collective oscillations in heterogeneous populations of active rotators. Klinshov V; Franović I Phys Rev E; 2019 Dec; 100(6-1):062211. PubMed ID: 31962480 [TBL] [Abstract][Full Text] [Related]
8. Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems. Zaks MA; Sailer X; Schimansky-Geier L; Neiman AB Chaos; 2005 Jun; 15(2):26117. PubMed ID: 16035919 [TBL] [Abstract][Full Text] [Related]
9. Constructive role of shot noise in the collective dynamics of neural networks. Klinshov VV; Smelov PS; Kirillov SY Chaos; 2023 Jun; 33(6):. PubMed ID: 37276575 [TBL] [Abstract][Full Text] [Related]
10. Globally coupled stochastic two-state oscillators: fluctuations due to finite numbers. Pinto IL; Escaff D; Harbola U; Rosas A; Lindenberg K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052143. PubMed ID: 25353775 [TBL] [Abstract][Full Text] [Related]
11. Theory of collective firing induced by noise or diversity in excitable media. Tessone CJ; Scirè A; Toral R; Colet P Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016203. PubMed ID: 17358231 [TBL] [Abstract][Full Text] [Related]
12. Phase synchronization between collective rhythms of globally coupled oscillator groups: noisy identical case. Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y Chaos; 2010 Dec; 20(4):043109. PubMed ID: 21198079 [TBL] [Abstract][Full Text] [Related]
13. Analysis of globally connected active rotators with excitatory and inhibitory connections using the Fokker-Planck equation. Kanamaru T; Sekine M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031916. PubMed ID: 12689110 [TBL] [Abstract][Full Text] [Related]
14. Noise-induced macroscopic oscillations in a network of synaptically coupled quadratic integrate-and-fire neurons. Ratas I; Pyragas K Phys Rev E; 2019 Nov; 100(5-1):052211. PubMed ID: 31869871 [TBL] [Abstract][Full Text] [Related]
16. State-dependent effects of Na channel noise on neuronal burst generation. Rowat PF; Elson RC J Comput Neurosci; 2004; 16(2):87-112. PubMed ID: 14758060 [TBL] [Abstract][Full Text] [Related]
17. Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling. Duan L; Fan D; Lu Q Cogn Neurodyn; 2013 Aug; 7(4):341-9. PubMed ID: 24427210 [TBL] [Abstract][Full Text] [Related]
18. Response of coupled noisy excitable systems to weak stimulation. Tanabe S; Shimokawa T; Sato S; Pakdaman K Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2182-5. PubMed ID: 11970012 [TBL] [Abstract][Full Text] [Related]
19. Noisy FitzHugh-Nagumo model: from single elements to globally coupled networks. Acebrón JA; Bulsara AR; Rappel WJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026202. PubMed ID: 14995543 [TBL] [Abstract][Full Text] [Related]
20. Two paradigmatic scenarios for inverse stochastic resonance. Bačić I; Franović I Chaos; 2020 Mar; 30(3):033123. PubMed ID: 32237779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]