These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34470249)

  • 41. Constraining chaos: Enforcing dynamical invariants in the training of reservoir computers.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37788385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid time series prediction with a hardware-based reservoir computer.
    Canaday D; Griffith A; Gauthier DJ
    Chaos; 2018 Dec; 28(12):123119. PubMed ID: 30599514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient forecasting of chaotic systems with block-diagonal and binary reservoir computing.
    Ma H; Prosperino D; Haluszczynski A; Räth C
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37307160
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Attractor reconstruction by machine learning.
    Lu Z; Hunt BR; Ott E
    Chaos; 2018 Jun; 28(6):061104. PubMed ID: 29960382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adaptable reservoir computing: A paradigm for model-free data-driven prediction of critical transitions in nonlinear dynamical systems.
    Panahi S; Lai YC
    Chaos; 2024 May; 34(5):. PubMed ID: 38717410
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Constructing differential equations using only a scalar time-series about continuous time chaotic dynamics.
    Tsutsumi N; Nakai K; Saiki Y
    Chaos; 2022 Sep; 32(9):091101. PubMed ID: 36182397
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting nonsmooth chaotic dynamics by reservoir computing.
    Shi L; Wang H; Wang S; Du R; Qu SX
    Phys Rev E; 2024 Jan; 109(1-1):014214. PubMed ID: 38366462
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics.
    Chorin AJ; Lu F
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9804-9. PubMed ID: 26216975
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synchronization of non-smooth chaotic systems via an improved reservoir computing.
    Wu G; Tang L; Liang J
    Sci Rep; 2024 Jan; 14(1):229. PubMed ID: 38167471
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep optical reservoir computing and chaotic synchronization predictions based on the cascade coupled optically pumped spin-VCSELs.
    Zhong D; Zhao K; Xu Z; Hu Y; Deng W; Hou P; Zhang J; Zhang J
    Opt Express; 2022 Sep; 30(20):36209-36233. PubMed ID: 36258555
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mapping topological characteristics of dynamical systems into neural networks: A reservoir computing approach.
    Chen X; Weng T; Yang H; Gu C; Zhang J; Small M
    Phys Rev E; 2020 Sep; 102(3-1):033314. PubMed ID: 33075895
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adapting reservoir computing to solve the Schrödinger equation.
    Domingo L; Borondo J; Borondo F
    Chaos; 2022 Jun; 32(6):063111. PubMed ID: 35778135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Configured quantum reservoir computing for multi-task machine learning.
    Xia W; Zou J; Qiu X; Chen F; Zhu B; Li C; Deng DL; Li X
    Sci Bull (Beijing); 2023 Oct; 68(20):2321-2329. PubMed ID: 37679257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interpretable Graph Reservoir Computing With the Temporal Pattern Attention.
    Han X; Zhao Y
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9198-9212. PubMed ID: 37015648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Delay-based reservoir computing: noise effects in a combined analog and digital implementation.
    Soriano MC; Ortín S; Keuninckx L; Appeltant L; Danckaert J; Pesquera L; van der Sande G
    IEEE Trans Neural Netw Learn Syst; 2015 Feb; 26(2):388-93. PubMed ID: 25608295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques.
    Xu D; Lu F
    Chaos; 2006 Dec; 16(4):043109. PubMed ID: 17199387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contrasting chaotic with stochastic dynamics via ordinal transition networks.
    Olivares F; Zanin M; Zunino L; Pérez DG
    Chaos; 2020 Jun; 30(6):063101. PubMed ID: 32611124
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visibility graphlet approach to chaotic time series.
    Mutua S; Gu C; Yang H
    Chaos; 2016 May; 26(5):053107. PubMed ID: 27249947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Hybrid Method Using HAVOK Analysis and Machine Learning for Predicting Chaotic Time Series.
    Yang J; Zhao J; Song J; Wu J; Zhao C; Leng H
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327919
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction.
    Li X; Zhu Q; Zhao C; Duan X; Zhao B; Zhang X; Ma H; Sun J; Lin W
    Nat Commun; 2024 Mar; 15(1):2506. PubMed ID: 38509083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.