These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34470257)

  • 1. The Sakaguchi-Kuramoto model in presence of asymmetric interactions that break phase-shift symmetry.
    Manoranjani M; Gupta S; Chandrasekar VK
    Chaos; 2021 Aug; 31(8):083130. PubMed ID: 34470257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix coupling and generalized frustration in Kuramoto oscillators.
    Buzanello GL; Barioni AED; de Aguiar MAM
    Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kuramoto model in the presence of additional interactions that break rotational symmetry.
    Chandrasekar VK; Manoranjani M; Gupta S
    Phys Rev E; 2020 Jul; 102(1-1):012206. PubMed ID: 32794959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal cost tuning of frustration: Achieving desired states in the Kuramoto-Sakaguchi model.
    Rosell-Tarragó G; Díaz-Guilera A
    Phys Rev E; 2021 Jan; 103(1-1):012216. PubMed ID: 33601612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model.
    Omel'chenko OE; Wolfrum M
    Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter.
    Chen B; Engelbrecht JR; Mirollo R
    Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Configurational stability for the Kuramoto-Sakaguchi model.
    Bronski JC; Carty T; DeVille L
    Chaos; 2018 Oct; 28(10):103109. PubMed ID: 30384636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise.
    Kostin VA; Munyaev VO; Osipov GV; Smirnov LA
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abrupt symmetry-preserving transition from the chimera state.
    Manoranjani M; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2023 Mar; 107(3-1):034212. PubMed ID: 37072986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization in a system of Kuramoto oscillators with distributed Gaussian noise.
    Campa A; Gupta S
    Phys Rev E; 2023 Dec; 108(6-1):064124. PubMed ID: 38243549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions.
    Sharma A; Rajwani P; Jalan S
    Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise.
    Gong CC; Zheng C; Toenjes R; Pikovsky A
    Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enlarged Kuramoto model: Secondary instability and transition to collective chaos.
    León I; Pazó D
    Phys Rev E; 2022 Apr; 105(4):L042201. PubMed ID: 35590592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
    Bick C; Ashwin P; Rodrigues A
    Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability.
    Zou W; Wang J
    Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and observation of moving domain fronts in a ring of coupled electronic self-oscillators.
    English LQ; Zampetaki A; Kevrekidis PG; Skowronski K; Fritz CB; Abdoulkary S
    Chaos; 2017 Oct; 27(10):103125. PubMed ID: 29092454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators.
    English LQ; Mertens D; Abdoulkary S; Fritz CB; Skowronski K; Kevrekidis PG
    Phys Rev E; 2016 Dec; 94(6-1):062212. PubMed ID: 28085391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of asymmetric parameters in higher-order coupling with bimodal frequency distribution.
    Manoranjani M; Gopal R; Senthilkumar DV; Chandrasekar VK; Lakshmanan M
    Phys Rev E; 2022 Mar; 105(3-1):034307. PubMed ID: 35428136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteroclinic switching between chimeras in a ring of six oscillator populations.
    Lee S; Krischer K
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37276574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.