These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 34470259)
1. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device. Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259 [TBL] [Abstract][Full Text] [Related]
2. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation. Khan AH; Jiang X; Kaushik A; Nair HS; Edirisinghe M; Mercado-Shekhar KP; Shekhar H; Dalvi SV Langmuir; 2022 Aug; 38(33):10288-10304. PubMed ID: 35943351 [TBL] [Abstract][Full Text] [Related]
3. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation. Lin H; Chen J; Chen C Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369 [TBL] [Abstract][Full Text] [Related]
4. Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles. Abou-Saleh RH; Armistead FJ; Batchelor DVB; Johnson BRG; Peyman SA; Evans SD Rev Sci Instrum; 2021 Jul; 92(7):074105. PubMed ID: 34340422 [TBL] [Abstract][Full Text] [Related]
5. Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review. Pulsipher KW; Hammer DA; Lee D; Sehgal CM Ultrasound Med Biol; 2018 Dec; 44(12):2441-2460. PubMed ID: 30241729 [TBL] [Abstract][Full Text] [Related]
6. Engineering the Echogenic Properties of Microfluidic Microbubbles Using Mixtures of Recombinant Protein and Amphiphilic Copolymers. Chen Z; Pulsipher KW; Chattaraj R; Hammer DA; Sehgal CM; Lee D Langmuir; 2019 Aug; 35(31):10079-10086. PubMed ID: 30768278 [TBL] [Abstract][Full Text] [Related]
7. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Hettiarachchi K; Talu E; Longo ML; Dayton PA; Lee AP Lab Chip; 2007 Apr; 7(4):463-8. PubMed ID: 17389962 [TBL] [Abstract][Full Text] [Related]
8. Bubble sorting in pinched microchannels for ultrasound contrast agent enrichment. Kok MP; Segers T; Versluis M Lab Chip; 2015; 15(18):3716-22. PubMed ID: 26223966 [TBL] [Abstract][Full Text] [Related]
10. On-chip generation of microbubbles in photoacoustic contrast agents for dual modal ultrasound/photoacoustic in vivo animal imaging. Das D; Sivasubramanian K; Yang C; Pramanik M Sci Rep; 2018 Apr; 8(1):6401. PubMed ID: 29686407 [TBL] [Abstract][Full Text] [Related]
11. Enhancing In Vitro Stability of Albumin Microbubbles Produced Using Microfluidic T-Junction Device. Khan AH; Surwase S; Jiang X; Edirisinghe M; Dalvi SV Langmuir; 2022 May; 38(17):5052-5062. PubMed ID: 34264681 [TBL] [Abstract][Full Text] [Related]
12. Generating Lifetime-Enhanced Microbubbles by Decorating Shells with Silicon Quantum Nano-Dots Using a 3-Series T-Junction Microfluidic Device. Wu B; Luo CJ; Palaniappan A; Jiang X; Gultekinoglu M; Ulubayram K; Bayram C; Harker A; Shirahata N; Khan AH; Dalvi SV; Edirisinghe M Langmuir; 2022 Sep; 38(36):10917-10933. PubMed ID: 36018789 [TBL] [Abstract][Full Text] [Related]
13. In vivo imaging of microfluidic-produced microbubbles. Dhanaliwala AH; Dixon AJ; Lin D; Chen JL; Klibanov AL; Hossack JA Biomed Microdevices; 2015 Feb; 17(1):23. PubMed ID: 25663444 [TBL] [Abstract][Full Text] [Related]
14. Micropipette-Based Microfluidic Device for Monodisperse Microbubbles Generation. Toshiyuki Matsumi C; José da Silva W; Kurt Schneider F; Miguel Maia J; E M Morales R; Duarte Araújo Filho W Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424320 [TBL] [Abstract][Full Text] [Related]
15. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles. Dhanaliwala AH; Chen JL; Wang S; Hossack JA Microfluid Nanofluidics; 2013 Mar; 14(3-4):457-467. PubMed ID: 23439786 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of transiently stable albumin-coated microbubbles via a flow-focusing microfluidic device. Chen JL; Dhanaliwala AH; Dixon AJ; Klibanov AL; Hossack JA Ultrasound Med Biol; 2014 Feb; 40(2):400-9. PubMed ID: 24342914 [TBL] [Abstract][Full Text] [Related]
18. Novel preparation techniques for controlling microbubble uniformity: a comparison. Stride E; Edirisinghe M Med Biol Eng Comput; 2009 Aug; 47(8):883-92. PubMed ID: 19434435 [TBL] [Abstract][Full Text] [Related]
19. Controllable Formation of Monodisperse Polymer Microbubbles as Ultrasound Contrast Agents. Song R; Peng C; Xu X; Wang J; Yu M; Hou Y; Zou R; Yao S ACS Appl Mater Interfaces; 2018 May; 10(17):14312-14320. PubMed ID: 29637761 [TBL] [Abstract][Full Text] [Related]
20. A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles. Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA Lab Chip; 2018 Aug; 18(17):2653-2664. PubMed ID: 30070301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]