BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34470259)

  • 1. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device.
    Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E
    J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation.
    Khan AH; Jiang X; Kaushik A; Nair HS; Edirisinghe M; Mercado-Shekhar KP; Shekhar H; Dalvi SV
    Langmuir; 2022 Aug; 38(33):10288-10304. PubMed ID: 35943351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles.
    Abou-Saleh RH; Armistead FJ; Batchelor DVB; Johnson BRG; Peyman SA; Evans SD
    Rev Sci Instrum; 2021 Jul; 92(7):074105. PubMed ID: 34340422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review.
    Pulsipher KW; Hammer DA; Lee D; Sehgal CM
    Ultrasound Med Biol; 2018 Dec; 44(12):2441-2460. PubMed ID: 30241729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the Echogenic Properties of Microfluidic Microbubbles Using Mixtures of Recombinant Protein and Amphiphilic Copolymers.
    Chen Z; Pulsipher KW; Chattaraj R; Hammer DA; Sehgal CM; Lee D
    Langmuir; 2019 Aug; 35(31):10079-10086. PubMed ID: 30768278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging.
    Hettiarachchi K; Talu E; Longo ML; Dayton PA; Lee AP
    Lab Chip; 2007 Apr; 7(4):463-8. PubMed ID: 17389962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble sorting in pinched microchannels for ultrasound contrast agent enrichment.
    Kok MP; Segers T; Versluis M
    Lab Chip; 2015; 15(18):3716-22. PubMed ID: 26223966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Shrinkage of Microfluidically Generated Microbubbles by Tuning Lipid Concentration.
    Zalloum IO; Paknahad AA; Kolios MC; Karshafian R; Tsai SSH
    Langmuir; 2022 Nov; 38(43):13021-13029. PubMed ID: 36260341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip generation of microbubbles in photoacoustic contrast agents for dual modal ultrasound/photoacoustic in vivo animal imaging.
    Das D; Sivasubramanian K; Yang C; Pramanik M
    Sci Rep; 2018 Apr; 8(1):6401. PubMed ID: 29686407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing In Vitro Stability of Albumin Microbubbles Produced Using Microfluidic T-Junction Device.
    Khan AH; Surwase S; Jiang X; Edirisinghe M; Dalvi SV
    Langmuir; 2022 May; 38(17):5052-5062. PubMed ID: 34264681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating Lifetime-Enhanced Microbubbles by Decorating Shells with Silicon Quantum Nano-Dots Using a 3-Series T-Junction Microfluidic Device.
    Wu B; Luo CJ; Palaniappan A; Jiang X; Gultekinoglu M; Ulubayram K; Bayram C; Harker A; Shirahata N; Khan AH; Dalvi SV; Edirisinghe M
    Langmuir; 2022 Sep; 38(36):10917-10933. PubMed ID: 36018789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo imaging of microfluidic-produced microbubbles.
    Dhanaliwala AH; Dixon AJ; Lin D; Chen JL; Klibanov AL; Hossack JA
    Biomed Microdevices; 2015 Feb; 17(1):23. PubMed ID: 25663444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropipette-Based Microfluidic Device for Monodisperse Microbubbles Generation.
    Toshiyuki Matsumi C; José da Silva W; Kurt Schneider F; Miguel Maia J; E M Morales R; Duarte Araújo Filho W
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles.
    Dhanaliwala AH; Chen JL; Wang S; Hossack JA
    Microfluid Nanofluidics; 2013 Mar; 14(3-4):457-467. PubMed ID: 23439786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of transiently stable albumin-coated microbubbles via a flow-focusing microfluidic device.
    Chen JL; Dhanaliwala AH; Dixon AJ; Klibanov AL; Hossack JA
    Ultrasound Med Biol; 2014 Feb; 40(2):400-9. PubMed ID: 24342914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging.
    Peyman SA; McLaughlan JR; Abou-Saleh RH; Marston G; Johnson BR; Freear S; Coletta PL; Markham AF; Evans SD
    Lab Chip; 2016 Feb; 16(4):679-87. PubMed ID: 26689151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel preparation techniques for controlling microbubble uniformity: a comparison.
    Stride E; Edirisinghe M
    Med Biol Eng Comput; 2009 Aug; 47(8):883-92. PubMed ID: 19434435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable Formation of Monodisperse Polymer Microbubbles as Ultrasound Contrast Agents.
    Song R; Peng C; Xu X; Wang J; Yu M; Hou Y; Zou R; Yao S
    ACS Appl Mater Interfaces; 2018 May; 10(17):14312-14320. PubMed ID: 29637761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles.
    Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA
    Lab Chip; 2018 Aug; 18(17):2653-2664. PubMed ID: 30070301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.