These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34470270)

  • 1. Perceptual equivalence of the Liljencrants-Fant and linear-filter glottal flow models.
    Perrotin O; Feugère L; d'Alessandro C
    J Acoust Soc Am; 2021 Aug; 150(2):1273. PubMed ID: 34470270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computationally efficient alternative for the Liljencrants-Fant model and its perceptual evaluation.
    Veldhuis R
    J Acoust Soc Am; 1998 Jan; 103(1):566-71. PubMed ID: 9440341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indicators of anterior-posterior phase difference in glottal opening measured from natural production of vowels.
    Murtola T; Alku P
    J Acoust Soc Am; 2020 Aug; 148(2):EL141. PubMed ID: 32873022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source-tract interaction with prescribed vocal fold motion.
    McGowan RS; Howe MS
    J Acoust Soc Am; 2012 Apr; 131(4):2999-3016. PubMed ID: 22501076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of glottal closure configuration on vocal efficacy in young normal-speaking women.
    Schneider B; Bigenzahn W
    J Voice; 2003 Dec; 17(4):468-80. PubMed ID: 14740929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of glottal open regions by exploiting changes in the vocal tract system characteristics.
    Prasad RS; Yegnanarayana B
    J Acoust Soc Am; 2016 Jul; 140(1):666. PubMed ID: 27475188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speech synthesis by glottal excited linear prediction.
    Childers DG; Hu HT
    J Acoust Soc Am; 1994 Oct; 96(4):2026-36. PubMed ID: 7963019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flow waveform-matched low-dimensional glottal model based on physical knowledge.
    Drioli C
    J Acoust Soc Am; 2005 May; 117(5):3184-95. PubMed ID: 15957786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M; Galindo GE; Erath BD; Peterson SD; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the glottal volume-velocity waveform for three voice types.
    Childers DG; Ahn C
    J Acoust Soc Am; 1995 Jan; 97(1):505-19. PubMed ID: 7860829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameterization of the voice source by combining spectral decay and amplitude features of the glottal flow.
    Alku P; Vilkman E; Laukkanen AM
    J Speech Lang Hear Res; 1998 Oct; 41(5):990-1002. PubMed ID: 9771623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Quantification of the Intraglottal Pressure: Modal Phonation and Voice Onset.
    DeJonckere PH; Lebacq J
    J Voice; 2020 Jul; 34(4):645.e19-645.e39. PubMed ID: 30658875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S; Scherer RC; Wan M; Wang S; Song B
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glottal inverse filtering with the closed-phase covariance analysis utilizing mathematical constraints in modelling of the vocal tract.
    Alku P; Magi C; Bäckström T
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):200-9. PubMed ID: 19415566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of glottal dynamics in the production of shouted speech.
    Mittal VK; Yegnanarayana B
    J Acoust Soc Am; 2013 May; 133(5):3050-61. PubMed ID: 23654408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pediatric high speed digital imaging of vocal fold vibration: a normative pilot study of glottal closure and phase closure characteristics.
    Patel RR; Dixon A; Richmond A; Donohue KD
    Int J Pediatr Otorhinolaryngol; 2012 Jul; 76(7):954-9. PubMed ID: 22445799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers.
    Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H
    J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.