These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34470272)

  • 1. Seabed classification from merchant ship-radiated noise using a physics-based ensemble of deep learning algorithms.
    Escobar-Amado CD; Neilsen TB; Castro-Correa JA; Van Komen DF; Badiey M; Knobles DP; Hodgkiss WS
    J Acoust Soc Am; 2021 Aug; 150(2):1434. PubMed ID: 34470272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum entropy inference of seabed properties using waveguide invariant features from surface ships.
    Knobles DP; Neilsen TB; Wilson PS; Hodgkiss WS; Bonnel J; Lin YT
    J Acoust Soc Am; 2022 May; 151(5):2885. PubMed ID: 35649902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seabed type and source parameters predictions using ship spectrograms in convolutional neural networks.
    Van Komen DF; Neilsen TB; Mortenson DB; Acree MC; Knobles DP; Badiey M; Hodgkiss WS
    J Acoust Soc Am; 2021 Feb; 149(2):1198. PubMed ID: 33639790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning location and seabed type from a moving mid-frequency source.
    Neilsen TB; Escobar-Amado CD; Acree MC; Hodgkiss WS; Van Komen DF; Knobles DP; Badiey M; Castro-Correa J
    J Acoust Soc Am; 2021 Jan; 149(1):692. PubMed ID: 33514137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seabed and range estimation of impulsive time series using a convolutional neural network.
    Van Komen DF; Neilsen TB; Howarth K; Knobles DP; Dahl PH
    J Acoust Soc Am; 2020 May; 147(5):EL403. PubMed ID: 32486785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ensemble source spectra model for merchant ship-radiated noise.
    Wales SC; Heitmeyer RM
    J Acoust Soc Am; 2002 Mar; 111(3):1211-31. PubMed ID: 11931298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of seabed on very low frequency sound recorded during passage of merchant ships on the New England shelf.
    Knobles DP; Wilson PS; Neilsen TB; Hodgkiss WS
    J Acoust Soc Am; 2021 May; 149(5):3294. PubMed ID: 34241096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ship Radiated Noise Recognition Technology Based on ML-DS Decision Fusion.
    Wang B; Wu C; Zhu Y; Zhang M; Li H; Zhang W
    Comput Intell Neurosci; 2021; 2021():8901565. PubMed ID: 34659395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of data augmentation on supervised learning for a moving mid-frequency source.
    Castro-Correa JA; Badiey M; Neilsen TB; Knobles DP; Hodgkiss WS
    J Acoust Soc Am; 2021 Nov; 150(5):3914. PubMed ID: 34852606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seabed classification using physics-based modeling and machine learning.
    Frederick C; Villar S; Michalopoulou ZH
    J Acoust Soc Am; 2020 Aug; 148(2):859. PubMed ID: 32873029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep sediment heterogeneity inferred using very low-frequency features from merchant shipsa).
    Hopps-McDaniel AM; Neilsen TB; Knobles DP; Hodgkiss WS; Wilson PS; Sagers JD
    J Acoust Soc Am; 2024 Oct; 156(4):2265-2274. PubMed ID: 39377532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical analysis of measured underwater radiated noise from merchant ships using ship operational and design parameters.
    Sakai M; Haga R; Tsuchiya T; Akamatsu T; Umeda N
    J Acoust Soc Am; 2023 Aug; 154(2):1095-1105. PubMed ID: 37606354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth and frequency dependence of geoacoustic properties on the New England Mud Patch from reflection coefficient inversiona).
    Jiang YM; Holland CW; Dosso SE; Dettmer J
    J Acoust Soc Am; 2023 Oct; 154(4):2383-2397. PubMed ID: 37850832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic resonances within the surficial layer of a muddy seabed.
    Dall'Osto DR; Tang D
    J Acoust Soc Am; 2022 May; 151(5):3473. PubMed ID: 35649909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory Inspired Convolutional Neural Networks for Ship Type Classification with Raw Hydrophone Data.
    Shen S; Yang H; Li J; Xu G; Sheng M
    Entropy (Basel); 2018 Dec; 20(12):. PubMed ID: 33266713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum entropy inference of seabed attenuation parameters using ship radiated broadband noise.
    Knobles DP
    J Acoust Soc Am; 2015 Dec; 138(6):3563-75. PubMed ID: 26723313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compression of a Deep Competitive Network Based on Mutual Information for Underwater Acoustic Targets Recognition.
    Shen S; Yang H; Sheng M
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array.
    Siderius M; Nielsen PL; Gerstoft P
    J Acoust Soc Am; 2002 Oct; 112(4):1523-35. PubMed ID: 12398459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ship Type Classification by Convolutional Neural Networks with Auditory-like Mechanisms.
    Shen S; Yang H; Yao X; Li J; Xu G; Sheng M
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31906314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.