These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 34470277)
1. Mandarin tone recognition training with cochlear implant simulation: Amplitude envelope enhancement and cue weighting. Kim S; Chou HH; Luo X J Acoust Soc Am; 2021 Aug; 150(2):1218. PubMed ID: 34470277 [TBL] [Abstract][Full Text] [Related]
2. Reverberation Degrades Pitch Perception but Not Mandarin Tone and Vowel Recognition of Cochlear Implant Users. Xu L; Luo J; Xie D; Chao X; Wang R; Zahorik P; Luo X Ear Hear; 2022 Jul-Aug 01; 43(4):1139-1150. PubMed ID: 34799495 [TBL] [Abstract][Full Text] [Related]
3. Enhancing Chinese tone recognition by manipulating amplitude envelope: implications for cochlear implants. Luo X; Fu QJ J Acoust Soc Am; 2004 Dec; 116(6):3659-67. PubMed ID: 15658716 [TBL] [Abstract][Full Text] [Related]
4. Loudness Contour Can Influence Mandarin Tone Recognition: Vocoder Simulation and Cochlear Implants. Meng Q; Zheng N; Li X IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):641-649. PubMed ID: 27448366 [TBL] [Abstract][Full Text] [Related]
5. Implementation and preliminary evaluation of 'C-tone': A novel algorithm to improve lexical tone recognition in Mandarin-speaking cochlear implant users. Ping L; Wang N; Tang G; Lu T; Yin L; Tu W; Fu QJ Cochlear Implants Int; 2017 Sep; 18(5):240-249. PubMed ID: 28629258 [TBL] [Abstract][Full Text] [Related]
6. Timbre and speech perception in bimodal and bilateral cochlear-implant listeners. Kong YY; Mullangi A; Marozeau J Ear Hear; 2012; 33(5):645-59. PubMed ID: 22677814 [TBL] [Abstract][Full Text] [Related]
7. Cantonese Tone Perception for Children Who Use a Hearing Aid and a Cochlear Implant in Opposite Ears. Mok M; Holt CM; Lee KYS; Dowell RC; Vogel AP Ear Hear; 2017; 38(6):e359-e368. PubMed ID: 28678079 [TBL] [Abstract][Full Text] [Related]
8. Acoustic cues to tonal contrasts in Mandarin: implications for cochlear implants. Kuo YC; Rosen S; Faulkner A J Acoust Soc Am; 2008 May; 123(5):2815. PubMed ID: 18529197 [TBL] [Abstract][Full Text] [Related]
9. Speech recognition and temporal amplitude modulation processing by Mandarin-speaking cochlear implant users. Luo X; Fu QJ; Wei CG; Cao KL Ear Hear; 2008 Dec; 29(6):957-70. PubMed ID: 18818548 [TBL] [Abstract][Full Text] [Related]
10. Concurrent-vowel and tone recognition by Mandarin-speaking cochlear implant users. Luo X; Fu QJ; Wu HP; Hsu CJ Hear Res; 2009 Oct; 256(1-2):75-84. PubMed ID: 19595753 [TBL] [Abstract][Full Text] [Related]
11. Do adults with cochlear implants rely on different acoustic cues for phoneme perception than adults with normal hearing? Moberly AC; Lowenstein JH; Tarr E; Caldwell-Tarr A; Welling DB; Shahin AJ; Nittrouer S J Speech Lang Hear Res; 2014 Apr; 57(2):566-82. PubMed ID: 24686722 [TBL] [Abstract][Full Text] [Related]
12. Factors Affecting Bimodal Benefit in Pediatric Mandarin-Speaking Chinese Cochlear Implant Users. Liu YW; Tao DD; Chen B; Cheng X; Shu Y; Galvin JJ; Fu QJ Ear Hear; 2019; 40(6):1316-1327. PubMed ID: 30882534 [TBL] [Abstract][Full Text] [Related]
13. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing. Carroll J; Tiaden S; Zeng FG J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360 [TBL] [Abstract][Full Text] [Related]
14. Training of cochlear implant users to improve pitch perception in the presence of competing place cues. Vandali A; Sly D; Cowan R; van Hoesel R Ear Hear; 2015; 36(2):e1-e13. PubMed ID: 25329372 [TBL] [Abstract][Full Text] [Related]
15. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization. Winn MB; Won JH; Moon IJ Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871 [TBL] [Abstract][Full Text] [Related]
16. Mandarin Tone Identification in Cochlear Implant Users Using Exaggerated Pitch Contours. He A; Deroche ML; Doong J; Jiradejvong P; Limb CJ Otol Neurotol; 2016 Apr; 37(4):324-31. PubMed ID: 26890043 [TBL] [Abstract][Full Text] [Related]
17. Cochlear-implant Mandarin tone recognition with a disyllabic word corpus. Wang X; Mo Y; Kong F; Guo W; Zhou H; Zheng N; Schnupp JWH; Zheng Y; Meng Q Front Psychol; 2022; 13():1026116. PubMed ID: 36324794 [TBL] [Abstract][Full Text] [Related]
18. Cantonese Tone Identification in Three Temporal Cues in Quiet, Speech-Shaped Noise and Two-Talker Babble. Wong P; Cheng ST; Chen F Front Psychol; 2018; 9():1604. PubMed ID: 30356874 [No Abstract] [Full Text] [Related]
19. Effects of Fundamental Frequency Contours on Sentence Recognition in Mandarin-Speaking Children With Cochlear Implants. Huang W; Wong LLN; Chen F; Liu H; Liang W J Speech Lang Hear Res; 2020 Nov; 63(11):3855-3864. PubMed ID: 33022190 [TBL] [Abstract][Full Text] [Related]
20. Faciliation of Mandarin tone perception by visual speech in clear and degraded audio: implications for cochlear implants. Smith D; Burnham D J Acoust Soc Am; 2012 Feb; 131(2):1480-9. PubMed ID: 22352518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]