These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34470335)

  • 41. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M; Galindo GE; Erath BD; Peterson SD; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.
    Duncan C; Zhai G; Scherer R
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2859-71. PubMed ID: 17139744
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees.
    Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Study on the modeling of the glottic vibration: towards a nonlinear model of type stick and slip].
    Garrel R; Giovanni A; Ouaknine MA
    Rev Laryngol Otol Rhinol (Bord); 2007; 128(5):279-88. PubMed ID: 20387373
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study of spatiotemporal liquid dynamics in a vibrating vocal fold by using a self-oscillating poroelastic model.
    Scholp A; Jeddeloh C; Tao C; Liu X; Dailey SH; Jiang JJ
    J Acoust Soc Am; 2020 Oct; 148(4):2161. PubMed ID: 33138511
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study of the mechanism of vocal fold vibration during phonation.
    Meyer B; Candau P; Alcaras N; MacLeod P
    Acta Otolaryngol; 1984; 97(5-6):407-14. PubMed ID: 6464699
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of glottal surface adhesion on vocal folds biomechanics.
    Bhattacharya P; Siegmund T
    Biomech Model Mechanobiol; 2015 Apr; 14(2):283-95. PubMed ID: 25034504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2007 Oct; 122(4):2279-95. PubMed ID: 17902864
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of Vertical Glottal Duct Length on Intraglottal Pressures and Phonation Threshold Pressure in the Uniform Glottis.
    Li S; Scherer RC; Fulcher LP; Wang X; Qiu L; Wan M; Wang S
    J Voice; 2018 Jan; 32(1):8-22. PubMed ID: 28599995
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ventricular-fold dynamics in human phonation.
    Bailly L; Bernardoni NH; Müller F; Rohlfs AK; Hess M
    J Speech Lang Hear Res; 2014 Aug; 57(4):1219-42. PubMed ID: 24687091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Reduced-Order Flow Model for Fluid-Structure Interaction Simulation of Vocal Fold Vibration.
    Li Z; Chen Y; Chang S; Luo H
    J Biomech Eng; 2020 Feb; 142(2):0210051-02100510. PubMed ID: 31201740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A synthetic, self-oscillating vocal fold model platform for studying augmentation injection.
    Murray PR; Thomson SL; Smith ME
    J Voice; 2014 Mar; 28(2):133-43. PubMed ID: 24476985
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2014 Mar; 135(3):1480-90. PubMed ID: 24606284
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aerodynamic impact of the ventricular folds in computational larynx models.
    Sadeghi H; Döllinger M; Kaltenbacher M; Kniesburges S
    J Acoust Soc Am; 2019 Apr; 145(4):2376. PubMed ID: 31046372
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Toward Development of a Vocal Fold Contact Pressure Probe: Sensor Characterization and Validation Using Synthetic Vocal Fold Models.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Kobler JB; Hillman RE; Erath BD
    Appl Sci (Basel); 2019 Aug; 9(15):. PubMed ID: 32377408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic glottal pressures in an excised hemilarynx model.
    Alipour F; Scherer RC
    J Voice; 2000 Dec; 14(4):443-54. PubMed ID: 11130103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.