These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 34470352)
1. Tuning the interfacial stoichiometry of InP core and InP/ZnSe core/shell quantum dots. Park N; Eagle FW; DeLarme AJ; Monahan M; LoCurto T; Beck R; Li X; Cossairt BM J Chem Phys; 2021 Aug; 155(8):084701. PubMed ID: 34470352 [TBL] [Abstract][Full Text] [Related]
2. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots. Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096 [TBL] [Abstract][Full Text] [Related]
3. Exciton Fine Structure and Lattice Dynamics in InP/ZnSe Core/Shell Quantum Dots. Brodu A; Ballottin MV; Buhot J; van Harten EJ; Dupont D; La Porta A; Prins PT; Tessier MD; Versteegh MAM; Zwiller V; Bals S; Hens Z; Rabouw FT; Christianen PCM; de Mello Donega C; Vanmaekelbergh D ACS Photonics; 2018 Aug; 5(8):3353-3362. PubMed ID: 30175158 [TBL] [Abstract][Full Text] [Related]
4. Tuning Hot Carrier Dynamics of InP/ZnSe/ZnS Quantum Dots by Shell Morphology Control. Park J; Won YH; Han Y; Kim HM; Jang E; Kim D Small; 2022 Feb; 18(8):e2105492. PubMed ID: 34889031 [TBL] [Abstract][Full Text] [Related]
5. Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation. Chen Y; Wang R; Kuang Y; Bian Y; Chen F; Shen H; Chi Z; Ran X; Guo L Nanoscale; 2023 Nov; 15(46):18920-18927. PubMed ID: 37975758 [TBL] [Abstract][Full Text] [Related]
7. Fabrication, spectroscopy, and dynamics of highly luminescent core-shell InP@ZnSe quantum dots. Kim MR; Chung JH; Lee M; Lee S; Jang DJ J Colloid Interface Sci; 2010 Oct; 350(1):5-9. PubMed ID: 20619850 [TBL] [Abstract][Full Text] [Related]
8. Engineering Brightness Matched Indium Phosphide Quantum Dots. Toufanian R; Chern M; Kong VH; Dennis AM Chem Mater; 2021 Mar; 33(6):1964-1975. PubMed ID: 34219920 [TBL] [Abstract][Full Text] [Related]
9. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots. Sung YM; Kim TG; Yun DJ; Lim M; Ko DS; Jung C; Won N; Park S; Jeon WS; Lee HS; Kim JH; Jun S; Sul S; Hwang S Small; 2021 Dec; 17(52):e2102792. PubMed ID: 34636144 [TBL] [Abstract][Full Text] [Related]
10. Suppressing the Cation Exchange at the Core/Shell Interface of InP Quantum Dots by a Selenium Shielding Layer Enables Efficient Green Light-Emitting Diodes. Sun Z; Wu Q; Wang S; Cao F; Wang Y; Li L; Wang H; Kong L; Yan L; Yang X ACS Appl Mater Interfaces; 2022 Apr; 14(13):15401-15406. PubMed ID: 35316038 [TBL] [Abstract][Full Text] [Related]
11. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. Li Y; Hou X; Dai X; Yao Z; Lv L; Jin Y; Peng X J Am Chem Soc; 2019 Apr; 141(16):6448-6452. PubMed ID: 30964282 [TBL] [Abstract][Full Text] [Related]
12. Ultrafast Charge Carrier Dynamics in InP/ZnSe/ZnS Core/Shell/Shell Quantum Dots. Zeng S; Li Z; Tan W; Si J; Li Y; Hou X Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364592 [TBL] [Abstract][Full Text] [Related]
13. Radiative dynamics and delayed emission in pure and doped InP/ZnSe/ZnS quantum dots. Cavanaugh P; Sun H; Jen-La Plante I; Bautista MJ; Ippen C; Ma R; Kelley AM; Kelley DF J Chem Phys; 2021 Dec; 155(24):244705. PubMed ID: 34972380 [TBL] [Abstract][Full Text] [Related]
14. Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness. Toufanian R; Piryatinski A; Mahler AH; Iyer R; Hollingsworth JA; Dennis AM Front Chem; 2018; 6():567. PubMed ID: 30515380 [TBL] [Abstract][Full Text] [Related]
15. Full-Spectrum InP-Based Quantum Dots with Near-Unity Photoluminescence Quantum Efficiency. Van Avermaet H; Schiettecatte P; Hinz S; Giordano L; Ferrari F; Nayral C; Delpech F; Maultzsch J; Lange H; Hens Z ACS Nano; 2022 Jun; 16(6):9701-9712. PubMed ID: 35709384 [TBL] [Abstract][Full Text] [Related]
16. Guilty as Charged: The Role of Undercoordinated Indium in Electron-Charged Indium Phosphide Quantum Dots. Stam M; du Fossé I; Infante I; Houtepen AJ ACS Nano; 2023 Sep; 17(18):18576-18583. PubMed ID: 37712414 [TBL] [Abstract][Full Text] [Related]
18. Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme. Kim HJ; Jo JH; Yoon SY; Jo DY; Kim HS; Park B; Yang H Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311083 [TBL] [Abstract][Full Text] [Related]
19. Near-Unity Photoluminescence Quantum Yield of Core-Only InP Quantum Dots Stam M; Almeida G; Ubbink RF; van der Poll LM; Vogel YB; Chen H; Giordano L; Schiettecatte P; Hens Z; Houtepen AJ ACS Nano; 2024 Jun; 18(22):14685-14695. PubMed ID: 38773944 [TBL] [Abstract][Full Text] [Related]
20. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics. Chung H; Cho KS; Koh WK; Kim D; Kim J Nanoscale; 2016 Jul; 8(29):14109-16. PubMed ID: 27272126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]