These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34470364)

  • 1. Core-shell particles in rotating electric and magnetic fields: Designing tunable interactions via particle engineering.
    Komarov KA; Mantsevich VN; Yurchenko SO
    J Chem Phys; 2021 Aug; 155(8):084903. PubMed ID: 34470364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagrammatics of tunable interactions in anisotropic colloids in rotating electric or magnetic fields: New kind of dipole-like interactions.
    Komarov KA; Yurchenko SO
    J Chem Phys; 2021 Sep; 155(11):114107. PubMed ID: 34551538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloids in rotating electric and magnetic fields: designing tunable interactions with spatial field hodographs.
    Komarov KA; Yurchenko SO
    Soft Matter; 2020 Sep; 16(35):8155-8168. PubMed ID: 32797126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagrammatic method for tunable interactions in colloidal suspensions in rotating electric or magnetic fields.
    Komarov KA; Yarkov AV; Yurchenko SO
    J Chem Phys; 2019 Dec; 151(24):244103. PubMed ID: 31893897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable interactions between particles in conically rotating electric fields.
    Komarov KA; Kryuchkov NP; Yurchenko SO
    Soft Matter; 2018 Dec; 14(47):9657-9674. PubMed ID: 30457624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions.
    Yakovlev EV; Kryuchkov NP; Korsakova SA; Dmitryuk NA; Ovcharov PV; Andronic MM; Rodionov IA; Sapelkin AV; Yurchenko SO
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):564-574. PubMed ID: 34626996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable two-dimensional assembly of colloidal particles in rotating electric fields.
    Yakovlev EV; Komarov KA; Zaytsev KI; Kryuchkov NP; Koshelev KI; Zotov AK; Shelestov DA; Tolstoguzov VL; Kurlov VN; Ivlev AV; Yurchenko SO
    Sci Rep; 2017 Oct; 7(1):13727. PubMed ID: 29062107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal speciation dynamics in soft colloidal ligand suspensions. Electrostatic and site distribution aspects.
    Duval JF
    J Phys Chem A; 2009 Mar; 113(11):2275-93. PubMed ID: 19281140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-assisted nano-patterning of magnetic core-shell particles in gradient fields.
    Xue X; Furlani EP
    Phys Chem Chem Phys; 2014 Jul; 16(26):13306-17. PubMed ID: 24871617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembly of Silica-Gold Core-Shell Microparticles by Electric Fields Toward Dynamically Tunable Metamaterials.
    Gao H; Xu Y; Yao K; Liu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14417-14422. PubMed ID: 33728895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple models for two-dimensional tunable colloidal crystals in rotating ac electric fields.
    Elsner N; Royall CP; Vincent B; Snoswell DR
    J Chem Phys; 2009 Apr; 130(15):154901. PubMed ID: 19388766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yolk/Shell Colloidal Crystals Incorporating Movable Cores with Their Motion Controlled by an External Electric Field.
    Watanabe K; Ishii H; Konno M; Imhof A; van Blaaderen A; Nagao D
    Langmuir; 2017 Jan; 33(1):296-302. PubMed ID: 27943677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable assembly of heterogeneously charged colloids.
    Bianchi E; Likos CN; Kahl G
    Nano Lett; 2014 Jun; 14(6):3412-8. PubMed ID: 24842542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable colloids: control of colloidal phase transitions with tunable interactions.
    Yethiraj A
    Soft Matter; 2007 Aug; 3(9):1099-1115. PubMed ID: 32900031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Inverse Squeezing Flow on the Self-Assembly of Oppositely Charged Colloidal Particles under Electric Field.
    Yuan J; Takae K; Tanaka H
    Phys Rev Lett; 2022 Dec; 129(24):248001. PubMed ID: 36563242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mix-and-Melt Colloidal Engineering.
    Hueckel T; Sacanna S
    ACS Nano; 2018 Apr; 12(4):3533-3540. PubMed ID: 29608292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials.
    Xue X; Wang J; Furlani EP
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22515-24. PubMed ID: 26389965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Trapping of Titania/Silica Core-Shell Colloidal Particles.
    Viravathana P; Marr DW
    J Colloid Interface Sci; 2000 Jan; 221(2):301-307. PubMed ID: 10631034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced diffusion and magnetophoresis of paramagnetic colloidal particles in rotating magnetic fields.
    Sherman ZM; Pallone JL; Erb RM; Swan JW
    Soft Matter; 2019 Aug; 15(33):6677-6689. PubMed ID: 31397836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics in suspensions of soft core-shell colloids in the fluid regime.
    Pamvouxoglou A; Bogri P; Nägele G; Ohno K; Petekidis G
    J Chem Phys; 2019 Jul; 151(2):024901. PubMed ID: 31301719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.