These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34471178)

  • 1. Marangoni effect inspired robotic self-propulsion over a water surface using a flow-imbibition-powered microfluidic pump.
    Kwak B; Choi S; Maeng J; Bae J
    Sci Rep; 2021 Sep; 11(1):17469. PubMed ID: 34471178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Untethered soft magnetic pump for microfluidics-based Marangoni surfer.
    Lin YH; Piñan Basualdo FN; Kalpathy Venkiteswaran V; Misra S
    Sci Rep; 2024 Aug; 14(1):20280. PubMed ID: 39217167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ON-OFF Control of Marangoni Self-propulsion via A Supra-amphiphile Fuel and Switch.
    Zhu G; Zhang S; Lu G; Peng B; Lin C; Zhang L; Shi F; Zhang Q; Cheng M
    Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202405287. PubMed ID: 38712847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Light-Powered Triboelectric Nanogenerator Based on the Photothermal Marangoni Effect.
    Liu C; Jiang D; Zhu G; Li Z; Zhang X; Tian P; Wang D; Wang E; Ouyang H; Xiao M; Li Z
    ACS Appl Mater Interfaces; 2022 May; 14(19):22206-22215. PubMed ID: 35522970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hydrolyzable Supra-amphiphile as a Marangoni Self-Propulsion Fuel for Efficient Macroscopic Supramolecular Self-Assembly.
    Lu G; Zhu G; Zhang Q; Tian P; Cheng M; Shi F
    Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202300448. PubMed ID: 36786533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant-loaded capsules as Marangoni microswimmers at the air-water interface: Symmetry breaking and spontaneous propulsion by surfactant diffusion and advection.
    Ender H; Froin AK; Rehage H; Kierfeld J
    Eur Phys J E Soft Matter; 2021 Mar; 44(2):21. PubMed ID: 33686547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-the-Fly Formation of Polymer Film at Water Surface.
    Vespini V; Coppola S; Ferraro P
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A remotely controlled Marangoni surfer.
    Timm ML; Jafari Kang S; Rothstein JP; Masoud H
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34500437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Menthyl acetate powered self-propelled Janus sponge Marangoni motors with self-maintaining surface tension gradients and active mixing.
    Archer RJ; Ebbens SJ; Kubodera Y; Matsuo M; Nomura SM
    J Colloid Interface Sci; 2025 Jan; 678(Pt B):11-19. PubMed ID: 39236350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired untethered fully soft robots in liquid actuated by induced energy gradients.
    Lyu LX; Li F; Wu K; Deng P; Jeong SH; Wu Z; Ding H
    Natl Sci Rev; 2019 Oct; 6(5):970-981. PubMed ID: 34691958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Footpad Sculpturing to Enhance the Maneuverability and Speed of a Robotic Marangoni Surfer.
    Bechard S; Timm ML; Masoud H; Rothstein JP
    Biomimetics (Basel); 2023 Sep; 8(5):. PubMed ID: 37754191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Manipulation of Liquids by Thermal Marangoni Flow along the Air-Water Interfaces of a Superhydrophobic Surface.
    Gao A; Butt HJ; Steffen W; Schönecker C
    Langmuir; 2021 Jul; 37(29):8677-8686. PubMed ID: 34256567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing bistability for directional propulsion of soft, untethered robots.
    Chen T; Bilal OR; Shea K; Daraio C
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5698-5702. PubMed ID: 29765000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive Inkjet Printing of Functional Silk Stirrers for Enhanced Mixing and Sensing.
    Zhang Y; Gregory DA; Zhang Y; Smith PJ; Ebbens SJ; Zhao X
    Small; 2019 Jan; 15(1):e1804213. PubMed ID: 30515976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-propulsion of a metallic superoleophobic micro-boat.
    Musin A; Grynyov R; Frenkel M; Bormashenko E
    J Colloid Interface Sci; 2016 Oct; 479():182-188. PubMed ID: 27388132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic imbalance induced self-propulsion of liquid metals.
    Zavabeti A; Daeneke T; Chrimes AF; O'Mullane AP; Zhen Ou J; Mitchell A; Khoshmanesh K; Kalantar-Zadeh K
    Nat Commun; 2016 Aug; 7():12402. PubMed ID: 27488954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Design and Experimental Validation of an Aquatic Snake Robot.
    Bianchi G; Lanzetti L; Mariana D; Cinquemani S
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Operated Dual-Mode Propulsion at the Liquid/Air Interface Using Flexible, Superhydrophobic, and Thermally Stable Photothermal Paper.
    Yang RL; Zhu YJ; Qin DD; Xiong ZC
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1339-1347. PubMed ID: 31880902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programming tunable active dynamics in a self-propelled robot.
    Paramanick S; Pal A; Soni H; Kumar N
    Eur Phys J E Soft Matter; 2024 May; 47(5):34. PubMed ID: 38782771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.